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Exercise 1.5.4

1. Write (2; 5; 3; 7)(4; 6; 9) as a product of the fewest number of
transpositions possible. (2; 5)(2; 3)(2; 7)(4; 6)(4; 9)

2. How do the number of transpositions occurring in an AT n factor-
ization of ¼ and the number of transpositions in a Tn factorization
of ¼ compare? For any ATn factorization there is always a Tn
factorization which is no `longer'.

3. What can you say about the parity (evenness or oddness) of the
number of transpositions in a Tn factorization of a permutation?
Any two Tn facorizations of a given permutation (appear to) have
the same parity. A proof appears later in the chapter (see Fact
??).

4. T F If ¼ is the product of an even number of transpositions,
then ¼¡1 is a product of an even number of transpositions. T

5. T F If ¼ is the product of an odd number of transpositions,
then ¼¡1 is a product of an odd number of transpositions. T
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6. Determine jTnj: A recursive approach yields jTnj = n ¡ 1 +

jTn¡1j =
n¡1X

k=1

k: The multiplication principle and the observation

that (a; b) = (b; a) yields n(n¡1)
2
: Taken together these observa-

tions provide a combinatorial proof that
n¡1X

k=1

k = n(n¡1)
2
:

0.0.1 f(1; 2); (1; 2; : : : ; n)g
Exercise 1.5.5

1. Factor (5; 6) 2 S8 in terms of ¿ and ½: ½4¿½4

2. Factor (5; 7) 2 S8 in terms of ¿ and ½:

(5; 7) = (5; 6)(6; 7)(5; 6)

= ½4¿½4½3¿½5½4¿½4

= ½4¿½7¿½9¿½4

= ½4¿½7¿½¿½4

3. Factor (5; 6; 7) 2 S8 in terms of ¿ and ½:

(5; 6; 7) = (5; 6)(5; 7)

= ½4¿½4½4¿½7¿½¿½4

= ½3¿½¿½4

4. T F Each element of Sn can be factored uniquely in terms of
¿ and ½: F

5. Estimate the probability that a subset of Sn consisting of just two
permutations generates Sn? Sampling from Sn suggest that
this probability approaches 3

4
as n ! 1:
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PairsGenSn1000 := function(n);
Sn := SymmetricGroup(n);
Count := 0;
for i in [1..1000] do
Pi := Random(Sn);
Tau := Random(Sn);
if sub<Sn j Pi, Tau> eq Sn then
Count : Count + 1;

end if;
end for;
return Count;

end function;
print PairsGenSn1000(20);
714

1. T F PRn generates Sn: T For example: We know that
f(1; 2); (1; 2; 3; 4)g = f¿; ½g generates S4; i.e., each element of S4
can be written as a product permutations in which each factor is
either ¿ or ½: Thus, if each of ¿ and ½ can be written as a product
of elements from PR4, then the result follows for n = 4. Observe
that

½1;3;o ¢ ½2;2;o = (1; 3; 2) ¢ (2; 3) = (1; 2) = ¿
and that

½31;3;i = (1; 4; 3; 2)
3 = (1; 2; 3; 4) = ½:

2. T F TIARn generates Sn: T Just notice that (1; 2); (1; n; n¡
1; : : : ; 2) 2 TIARn and that (1; n; n¡1; : : : ; 2)n¡1 = (1; 2; 3; : : : ; n):

3. T F The set f½n;n;i; ½n;n;og generates S2n. F For n = 4;

½4;4;i = (1; 2; 4; 8; 7; 5)(3; 6) and ½4;4;o = (2; 3; 5)(4; 7; 6)

and Magma shows that these two permutations do not generate
S8:

S8 := SymmetricGroup(8);

Pi := S8 ! (1; 2; 4; 8; 7; 5)(3; 6);
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Tau := S8 ! (2; 3; 5)(4; 7; 6);

print S8 eq sub< S8 j Pi, Tau >;
false

Comment. Later in the chapter it will be clear that the reason
for this result is that both of these permutations are even; i.e.,
they must generate a subgroup of the subgroup of even permuta-
tions.

0.1 Does f¼g generate Sn?
Exercise 1.6.1

1. Compute orders of permutations until it is second nature to you.

2. The order of a k-cycle is k.

3. List the orders which occur in S5 (See Exercise ??):

Form Partition Order
(v; w; x; y; z) [5] 5
(v; w; x; y)(z) [4; 1] 4
(v; w; x)(y; z) [3; 2] 6
(v; w; x)(y)(z) [3; 1; 1] = [3; 12] 3
(v; w)(x; y)(z) [2; 2; 1] = [22; 1] 4
(v; w)(x)(y)(z) [2; 1; 1; 1] = [2; 13] 2
(v)(w)(x)(y)(z) [1; 1; 1; 1; 1] = [15] 1

4. Choose ® and ¯ at random from various Sn's and compare the
order of ®¯ with the orders of ® and ¯. By hand or computer,
the point is that the order of a product can be poorly behaved |
in particular, it is not (in general) the product of the orders.
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Exercise 1.6.2

1. Check that each of these four properties hold for h¼i where ¼ is
an arbitrary element of Sn. (Recall that each of these properties
holds for Sn:) Denote jh¼ij by k.

Closure: ¼r ¢¼s = ¼r+s = ¼k¢i+j = (¼k)i ¢¼j = ¼j where
0 � j < k:

Associativity: Associativity is inherited from Sn.

Identity: id = ¼k = ¼0 2 h¼i :
Inverses: ¼r ¢ ¼r¡s = id:

2. If ¼ is of order k, then ¼¡1 = ¼h where h = k ¡ 1:

3. T F The inverse of a permutation can always be written as a
power of that permutation. T

4. Make sense out of ¼¡m. ¼¡m = (¼¡1)m = (¼m)¡1

5. Under what conditions is it true that jh®¯ij = jh®ij¢jh¯ij? It's
true if ® commutes with ¯ and their orders are relatively prime.

6. T F jh®¯®¡1ij = jh®ij : F

7. T F jh®¯®¡1ij = jh¯ij : T (because ®¯®¡1 and ¯ have the
same FFPA form)

Exercise 1.6.3

1. T F All proper subgroups of Sn are cyclic subgroups. F
fid; (1; 2); (3; 4); (1; 2)(3; 4)g is a subgroup of S4 which is not cyclic.
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2. Exhibit an element, say ¹52, in S52 of maximum order.

¹52 = (1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13) ¢ (14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 2
¢(25; 26; 27; 28; 29; 30; 31; 32; 33) ¢ (34; 35; 36; 37; 38; 39; 40)
¢(41; 42; 43; 44; 45) ¢ (46; 47; 48; 49) ¢ (50; 51; 52)

jh¹52ij = lcm[13; 11; 9; 7; 5; 4; 3] = 180; 180:

Comment. ¹52 is not unique nor is the associated FFPA form.
The question of just how many permutations induce the same
FFPA form is dealt with in Chapter 2. Some students might
want some empirical help to get started on this:

> pi := Random(SymmetricGroup(52));
> print pi, Order(pi);

3. Compute jh¹52ij = jS52j : 180180
52!

:
= 2: 2339£ 10¡63

4. Make a conjecture concerning

lim
n!1

jh¹nij
n!

= 0:

0.2 A shu²ing status report

Exercise 1.7.1
Discuss the practicality of shu²ing an 52-card deck using each of

the following generating sets.

1. S52: No | this is n-card pickup.

2. CYC52: No.
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3. T52: No.

4. AT52: Maybe.

5. f(1; 2); (1; 2; 3; : : : ; n¡ 1; n)g : Yes.

6. TIAR52: Yes.

7. PR52: No, but standard shu²ing is our attempt at a reasonable
approximation.

Comment. These answers are assuming `practicality' means
that a human being might be able to perform the shu²es with a
deck prior to a game of cards.

0.3 Directed labelled graphs

Exercise 1.8.1

1. T F ATn will shu²e an n-card deck. F

2. Exhibit E4 and O4 for the Cayley digraph of S4 induced by AT4.

E4 O4 = E4 ¢ (1; 2)
id (1; 2)
(1; 2; 3) (2; 3)
(1; 3; 2) (1; 3)
(1; 3; 4) (1; 3; 4; 2)
(1; 4; 3) (1; 4; 3; 2)
(1; 2; 4) (2; 4)
(1; 4; 2) (1; 4)
(2; 3; 4) (1; 2; 3; 4)
(2; 4; 3) (1; 2; 4; 3)
(1; 2)(3; 4) (3; 4)
(1; 3)(2; 4) (1; 3; 2; 4)
(1; 4)(2; 3) (1; 4; 2; 3)
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3. Draw the Cayley digraph of S3 induced by T3.

abc bac

cab acb

bca cba

4. T F T3 will shu²e a 3-card deck. F

5. T F Tn will shu²e an n-card deck. F

6. Draw the Cayley digraph of S3 induced by TIAR3.

abc bac

cab acb

bca cba

7. T F TIAR3 will shu²e a 3-card deck. T (or so it appears)

8. T F TIARn will shu²e an n-card deck. T (or so it appears)

Exercise 1.8.2

1. Draw the card position digraph of N3 induced by T3.
® = (1; 2); ¯ = (2; 3); ° = (1; 3)

1 2 3
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2. Draw the card position digraph of N3 induced by TIAR3.

i = id; ¾ = (1; 2); ¯ = (1; 3; 2)

1 2 3

3. Draw the card position digraph of N4 induced by AT4.
® = (1; 2); ¯ = (2; 3); ± = (3; 4)

1 2 3 4

4. Draw the card position digraph of N4 induced by T4.
® = (1; 2); ¯ = (2; 3); ± = (3; 4); ° = (1; 3); " = (1; 4); ! = (2; 4)

1 2 3 4

5. Draw the card position digraph of N4 induced by TIAR4.

i = id; ¾ = (1; 2); ¿ = (1; 3; 2); ¯ = (1; 4; 3; 2)

1 2 3 4


