A nswers and Comments to Exercises
 Exercise 1.5.2 and 1.5.3

Exercise 1.5.2

Exercise 0.0.1

1. Determine the FFPA form of $1 / 4^{1}=(1 ; 2)(3 ; 4)(2 ; 3)(1 ; 2)(4 ; 5)$ and compare it with the FFPA form of $1 / 4 \quad 1 / 4{ }^{1}=(1 ; 3 ; 5 ; 4)$; they are the same
2. Determine the FFPA form of $1 / 4^{1}=(3 ; 4)(4 ; 5)(2 ; 3)(1 ; 2)(2 ; 3)$ and compare it with the FFPA form of $1 / 4 \quad 1 / 44^{1}=(1 ; 3 ; 5 ; 4)$; they are the same
3. Compute the inverse of
(a) $(1 ; 8 ; 9 ; 2 ; 7): \quad(1 ; 7 ; 2 ; 9 ; 8)$
(b) $(3 ; 6 ; 5 ; 4)$: $(3 ; 4 ; 5 ; 6)$
(c) $(2 ; 3 ; 9 ; 4 ; 5 ; 8): \quad(2 ; 8 ; 5 ; 4 ; 9 ; 3)$
(d) $(1 ; 8 ; 9 ; 2 ; 7)(3 ; 6 ; 5 ; 4): \quad(1 ; 7 ; 2 ; 9 ; 8)(3 ; 4 ; 5 ; 6)$
(e) $(1 ; 8 ; 9 ; 2 ; 7)(2 ; 3 ; 9 ; 4 ; 5 ; 8): \quad(1 ; 7 ; 2)(3 ; 9)(4 ; 8 ; 5)$
(f) $(3 ; 6 ; 5 ; 4)(2 ; 3 ; 9 ; 4 ; 5 ; 8): \quad(2 ; 8 ; 6 ; 3)(4 ; 9)$
4. $\mathrm{T} \quad \mathrm{F}\left(®^{-}\right)^{11}=®^{1^{-} i^{1}}: \quad \mathrm{F}$
5. T F $\left(\circledR^{-}\right)^{1}{ }^{1}={ }^{-} i^{1}{ }_{\circledR}{ }^{1}: \quad \mathrm{T}$
6. Suppose $\circledR^{-}={ }^{\circ}$ in S_{n}.
(a) $\mathrm{T} F \mathbb{} \quad{ }^{-}{ }^{10}$: F
(b) $T \quad \mathrm{~F}$ ® ${ }^{0-}{ }^{-} 1$: T
(c) $\mathrm{T}^{-}={ }^{\circ}{ }^{\circledR 1}{ }^{1}: \mathrm{F}$
(d) $\mathrm{T}^{-}=\circledR^{\circledR 10}$: T

Exercise 1.5.3

1. Determine $\mathrm{jA} \mathrm{T}_{\mathrm{n}} \mathrm{j}: \quad \mathrm{n} \mathrm{i} 1$
2. Write $(1 ; 6 ; 3 ; 2)(4 ; 7) 2 \mathrm{~S}_{8}$ as a product of adjacent transpositions $(4 ; 5)(5 ; 6)(6 ; 7)(1 ; 2)(2 ; 3)(3 ; 4)(4 ; 5)(5 ; 6)(3 ; 4)(4 ; 5)$
3. Write $(1 ; 8)(2 ; 7)(3 ; 6)(4 ; 5)$ as a product of adjacent transpositions.

$$
\begin{aligned}
& (7 ; 8) \\
& \$ 6 ; 7)(7 ; 8) \\
& \$ 5 ; 6)(6 ; 7)(7 ; 8) \\
& \$ 4 ; 5)(5 ; 6)(6 ; 7)(7 ; 8) \\
& \$ 3 ; 4)(4 ; 5)(5 ; 6)(6 ; 7)(7 ; 8) \\
& \$ 2 ; 3)(3 ; 4)(4 ; 5)(5 ; 6)(6 ; 7)(7 ; 8) \\
& \$ 1 ; 2)(2 ; 3)(3 ; 4)(4 ; 5)(5 ; 6)(6 ; 7)(7 ; 8)
\end{aligned}
$$

4. T F Each element of S_{n} can be written as a product of adjacent transpositions in a unique way. F
5. T F Two factorizations of an element of S_{n} into adjacent transpositions contain the same number of factors. T
6. Let \#atrans $(1 / 2)$ denote the number of adjacent transpositions appearing in an $A T_{n}$ factorization of $1 / 42 \mathrm{~S}_{\mathrm{n}}$.
(a) Determine the minimum value of \# atrans $(1 / 2)$. 0
b) Determine ${ }^{1}$
(b) Determine the maximum value of \# atrans ($1 / 2$: $\quad k$ (which some students may recognize as $\frac{n\left(n_{i} 1\right)}{2}$ from a previous brush with induction).
(c) Conjecture the average value of \#atrans $(1 / 2)$: Sampling or a heuristic argument should suggest $\frac{n\left(n_{i} 1\right)}{4}$ (which will be veri ${ }^{-}$ed in Chapter 2 | see ??).
