Answers and Comments to Exercises

Section 1.4

Exercise 1.4.2

1. Determine the number of association schemes for evaluating a product of four permutations.

$$
\begin{aligned}
& { }^{\circledR} \Phi\left(\left(^{-} \phi\left({ }^{\circ} \dagger \pm\right) \frac{9}{3}\right.\right. \\
& { }^{\circledR} \phi\left(\left(^{-} \phi^{\circ}\right) \phi \pm \xrightarrow{\underline{3}}\right. \\
& \text { (® } \left.\dagger^{-}\right) ~ \Phi\left({ }^{\circ} \phi \pm\right) 5 \\
& \left(® \phi\left(^{-} \Phi^{\circ}\right)\right) \phi \pm 3 \\
& \left(\left(® \Phi^{-}\right) \Phi^{\circ}\right) \Phi \pm^{\prime}
\end{aligned}
$$

2. Determine the number of association schemes for evaluating a product of ${ }^{-}$ve permutations. Let a_{n} denote the number of association schemes for a product of $n+1$ permuations (i.e., n multiplication symbols are used). We have that

$$
a_{0}=1 ; a_{1}=1 ; a_{2}=2 ; a_{3}=5
$$

by listing and counting the possibilities. Listing is productive when you get to $\mathrm{n}=4$ if you recognize that the association schemes can be organized using the 'naked' multiplication symbol that must appear in each association scheme.

$$
\begin{aligned}
& \text { ® } \downarrow\left(\left(^{-} \not \subset\left({ }^{\circ} \phi \pm\right) \text { は" }^{\circ}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& a_{4}=14=5+2+2+4=a_{0} \emptyset_{3}+a_{1} ф_{2}+a_{2} \pitchfork_{1}+a_{3} \emptyset_{0}={ }_{i=0}^{X^{3}} a_{i} a_{3 i} i
\end{aligned}
$$

3. Can you generalize the previous two counts to a product of n permutations?

$$
a_{n+1}=x_{i=0}^{x} a_{i} \not a_{n_{i} i}
$$

Exercise 1.4.3

1. Evaluate μ фid: $\quad \mu$
2. Evaluate id $\dagger \mu: \quad \mu$

Exercise 1.4.4

1. Exhibit two cycles, say \tilde{A}_{1} and \tilde{A}_{2}, in S_{8} which do not satisfy

$$
\begin{aligned}
\tilde{A}_{1} \tilde{A}_{2} & =\tilde{A}_{1} \tilde{A}_{2} . \\
(1 ; 2)(1 ; 3) & =(1 ; 2 ; 3) 6(1 ; 3 ; 2)=(1 ; 3)(1 ; 2)
\end{aligned}
$$

2. What is it about $\circledR^{\circledR}=(1 ; 4)$ and $^{-}=(2 ; 7 ; 5 ; 8 ; 3)$ that guarantees

$$
\text { ® } \phi^{-}={ }^{-} \phi ® ?
$$

The cycles are disjoint (so they don't interact').
3. Complete a commutativity matrix for S_{3} : Put a $1(0)$ at the intersection of the $3 / 4$ th row and i-th column of the following array if $3 / i=i^{3 / 4}\left(3 / 4 \in i^{3 / 4}\right)$.

	id	$(1 ; 2 ; 3)$	$(1 ; 3 ; 2)$	$(1 ; 2)$	$(2 ; 3)$	$(1 ; 3)$
id	1	1	1	1	1	1
$(1 ; 2 ; 3)$	1	1	1	0	0	0
$(1 ; 3 ; 2)$	1	1	1	0	0	0
$(1 ; 2)$	1	0	0	1	0	0
$(2 ; 3)$	1	0	0	0	1	0
$(1 ; 3)$	1	0	0	0	0	1

4. Determine the probability that two elements of S_{3} commute; i.e., the probability that $3 / 4=i^{3 / 4}$ for $3 / 4 i 2 S_{3}$: $\quad \frac{18}{36}=\frac{6 B}{66}=\frac{3}{6}$
5. Complete a commutativity matrix for S_{4} and determine the probablility that two elements of S_{4} commute. $\quad \frac{120}{576}=\frac{245}{24 Q 4}=\frac{5}{24}$
6. Determine the probabliility that two elements of $S_{5} ; S_{6}$; and S_{7} commute.

$$
\begin{aligned}
& \text { CommPairs := function(n); } \\
& \text { Count := } 0 \\
& \text { for Pi in SymmetricGroup(n) do } \\
& \text { for Tau in SymmetricGroup(n) do } \\
& \text { if Pi*Tau eq Tau*Pi then } \\
& \quad \text { Count := Count }+1 ; \\
& \text { end if; } \\
& \text { end for; } \\
& \text { end for; } \\
& \text { return Count; } \\
& \text { end function; } \\
& \text { print CommPairs(5); } \quad \frac{840}{(5!)^{2}}=\frac{5!(1)}{(5!)^{2}}=\frac{7}{5!} \\
& 840
\end{aligned}
$$

1.

$$
\begin{array}{ll}
\text { print CommP airs(6); } & \frac{7920}{(6!)^{2}}=\frac{6!41}{(6!)^{2}}=\frac{11}{6!} \\
\text { print CommPairs(7); } & \frac{75600}{(7!!)^{2}}=\frac{7!(45}{(7!)^{2}}=\frac{15}{7!} \\
75600 &
\end{array}
$$

Comment. These probabilities are structured to suggest that there is a pattern waiting to be discovered. In particular we will eventually recognize that through $\mathrm{n}=7$ the probabilites are the ratio of the number of partitions of n to the cardinality of S_{n}. This observation will ${ }^{-}$nally be explained in terms of Burnside's Lemma.
2. Estimate the probability that two elements of S_{8} and S_{52} commute.

$$
\begin{aligned}
& \text { EstCommP airs1000:= function(n); } \\
& \text { Count }:=0 ; \\
& \text { for i in }[1 . .1000] \text { do } \\
& \text { Pi }:=\text { R andom(SymmetricGroup(n)); } \\
& \text { Tau }:=\text { R andom(SymmetricG roup(n)); } \\
& \text { if Pi*Tau eq Tau*Pi then } \\
& \text { Count }:=\text { Count }+1 ; \\
& \text { end if; }
\end{aligned}
$$

1.

end for;
return Count;
end function;
print EstCommPairs1000(8);
1
Estimated probability $\frac{1}{1000}$
print EstCommPairs1000(52);
0
Estimated probability $\frac{0}{1000}$
2. How does the probability that two elements of S_{n} commute behave as n ! 1 ? The following Magma code
for n in [1..100] do print EstCommPairs1000(n);
end for;
should convince the students the probabiliity is very close to zero.

Exercise 1.4.5

The process of getting dressed after your morning shower is a composition of several dressing 'factors'. T wo of these factors are a (putting on your socks) and b (putting on your shoes). Check to see that
$a b \in b a:$

Comment. Walking into the classroom with a sock over one of your shoes makes this point quite clear.

Exercise 1.4.6

1. Use the FFPA to represent elements of S_{n} until the process is second nature to you. Here are a few in S_{9} to get you started:
(a) $(2 ; 3 ; 7)(1 ; 3 ; 9 ; 7)(2 ; 7 ; 5)=(1 ; 3)(2 ; 9 ; 5)$
(b) $(1 ; 5)(5 ; 6)(2 ; 7 ; 9)(5 ; 4)=(1 ; 6 ; 4 ; 5)(2 ; 7 ; 9)$
(c) $(2 ; 7 ; 5 ; 3 ; 4)(8 ; 9)(1 ; 5 ; 2 ; 6)(8 ; 9)=(1 ; 5 ; 3 ; 4 ; 6)(2 ; 7)$
(d) $(1 ; 2)(1 ; 3)(1 ; 4)(1 ; 5)(1 ; 6)(1 ; 7)(1 ; 8)(1 ; 9)=(1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9)$
2. The FFPA 'form' of a permutation in S_{n} induces a natural partition of n because each element of N_{n} occurs in one, and only one, cycle of the permutation. For example, the form ($v ; w ; x)(y ; z)$,
which is the 'same' as the form $(v ; w)(x ; y ; z)$, induces the partition [3;2] of ${ }^{-}$ve. Complete the following table for S_{5}.

Form	Cardinality	Partitionof 5
(v;w;x;y;z)	$\frac{5!}{5}=4!=24$	[5]
$(\mathrm{v} ; \mathrm{w} ; \mathrm{x} ; \mathrm{y})(\mathrm{z})$	$\frac{54868}{4}=30$	[4;1]
$(v ; w ; x)(y ; z)$	$\frac{544 B^{4}}{}{ }^{2} \frac{2 Q}{2}=20$	[3; 2]
$(\mathrm{v} ; \mathrm{w} ; \mathrm{x})(\mathrm{y})(\mathrm{z})$	$\frac{548}{3} \mathrm{t} \frac{20}{2!}=20$	$[3 ; 1 ; 1]=\left[3 ; 1^{2}\right]$
$(\mathrm{v} ; \mathrm{w})(\mathrm{x} ; \mathrm{y})(\mathrm{z})$		$[2 ; 2 ; 1]=\left[2^{2} ; 1\right]$
$(\mathrm{v} ; \mathrm{w})(\mathrm{x})(\mathrm{y})(\mathrm{z})$	$\frac{54}{2} ¢ \frac{324 d}{3!}=10$	$[2 ; 1 ; 1 ; 1]=\left[2 ; 1^{3}\right]$
(v)(w)(x)(y)(z)		$[1 ; 1 ; 1 ; 1 ; 1]=\left[1^{5}\right]$

Comment. An equivalence relation on permutations is rearing its head without waiting for a formal de- nition. This is also a good time to emphasize structured counting, even though counting techniques have yet to be developed.
3. Complete the analogous table for S_{4} :

Form	Cardinality	Partition of 4
(v;w; $\mathrm{x} ; \mathrm{y}$)	$\frac{4!}{4}=3!=6$	[4]
$(\mathrm{v} ; \mathrm{w} ; \mathrm{x})(\mathrm{y})$	$\frac{4188)}{3}=8$	[3; 1]
$(v ; w)(x ; y)$		$[2 ; 2]=\left[2^{2}\right]$
$(\mathrm{v} ; \mathrm{w})(\mathrm{x})(\mathrm{y})$	$\frac{4 B^{2}}{}{ }^{2}+\frac{2 Q}{2!}=6$	$[2 ; 1 ; 1]=\left[2 ; 1^{2}\right]$
(v)(w)(x)(y)	$\frac{8 Q 4}{4!}=1$	$[1 ; 1 ; 1 ; 1]=\left[1^{4}\right]$

4. Why are the forms $(v ; w ; x)(y ; z)$ and $(v ; w)(x ; y ; z)$ the same? The cycles are disjoint so $(v ; w)(x ; y ; z)=(x ; y ; z)(v ; w) ; i . e .$, both forms look like ($\mathrm{a} ; \mathrm{b} ; \mathrm{c}$)(d; e):
5. Which is larger (and why), the number of partitions of n or $n!?$ The larger is n ! because each partition of n corresponds (in a natural way via the FFPA) to one or more permutations.
6. Let $1 / 4=(1 ; 6 ; 3)(2 ; 7 ; 5 ; 4) 2 S_{7}$. Record the successive powers of
$1 / 44^{1 / 1 / 4} 1 / 4 \phi^{1 / 4}=1 / 4 ; 1 / 44^{1 / 4} 4^{1 / 4}=1 / 4 /$ etc.) in FFPA form.

$$
\begin{aligned}
& 1 / 4=(1 ; 6 ; 3)(2 ; 7 ; 5 ; 4) \\
& 1 / 4=(1 ; 3 ; 6)(2 ; 5)(4 ; 7) \\
& 1 / 3=(2 ; 4 ; 5 ; 7) \\
& 1 / 4=(1 ; 6 ; 3) \\
& 1 / 4=(1 ; 3 ; 6)(2 ; 7 ; 5 ; 4) \\
& 1 / 6=(2 ; 5)(4 ; 7) \\
& 1 / 4=(1 ; 6 ; 3)(2 ; 4 ; 5 ; 7) \\
& 1 / 8=(1 ; 3 ; 6) \\
& 1 / 4=(2 ; 7 ; 5 ; 4) \\
& 1 / 4^{0}=(1 ; 6 ; 3)(2 ; 5)(4 ; 7) \\
& 1 / 4^{1}=(1 ; 3 ; 6)(2 ; 4 ; 5 ; 7) \\
& 1 / /^{2}=\quad \quad i d \\
& 1 / 4^{13}=(1 ; 6 ; 3)(2 ; 7 ; 5 ; 4) \\
& 1 / 4^{4}=(1 ; 3 ; 6)(2 ; 5)(4 ; 7) \\
& 1 / 4^{5}=(2 ; 4 ; 5 ; 7)
\end{aligned}
$$

Comment. After the students produce this data by hand I give them the relevant Magma code:

$$
\begin{aligned}
& \mathrm{S7}:=\text { SymmetricG roup(7); } \\
& \mathrm{Pi}:=\mathrm{S7!(1,6,3)(2,7,5,4);} \\
& \text { for } \mathrm{n} \text { in }[1 . .15] \text { do } \\
& \text { print } \mathrm{n}, \mathrm{Pi} \mathrm{n} ; \\
& \text { end for; }
\end{aligned}
$$

1. Let \#1-cycles $(1 / 2)$ denote the number of 1 -cycles (${ }^{-}$xed points) appearing in the FFPA form of $1 / 4$
(a) Determine the minimum value of \# 1-cycles $(1 / 2)$ for $1 / 42 \mathrm{~S}_{10}$: 0
(b) Determine the maximum value of \# 1-cycles $(1 / 2)$ for $1 / 42 \mathrm{~S}_{10}$: 10
(c) E stimate the average value of \# 1-cycles($1 / 4$ for $1 / 42 \mathrm{~S}_{10}$: $1 / 4$ 1
(d) Generalize to S_{n} : $0 ; n ; 1$
2. Let \#2-cycles $(1 / 2)$ denote the number of 2 -cycles (transpositions) appearing in the FFPA form of $1 / 4$
(a) Determine the minimum value of \# 2 -cycles($1 / 4$ for $1 / 42 S_{10}$: 0
(b) Determine the maximum value of \# 2-cycles($1 / 4$ for $1 / 42 \mathrm{~S}_{10}$: 5
(c) E stimate the average value of \# 2-cycles($1 / 4$ for $1 / 42 S_{10}$: $1 / 4$ $\frac{1}{2}$
(d) Generalize to S_{n} : $\quad 0 ;{ }_{\frac{n}{2}}{ }^{\ddagger} ; \frac{1}{2}$
3. Generalize your observations in 1 and 2 to $\# k-\operatorname{cycles}(1 / 4)$ in $S_{n}: \quad 0 ;{ }_{\frac{n}{k}}^{\neq 1} ; 1 / 4$ $\frac{1}{\mathrm{k}}$
4. Let \# cycles($1 / 4$ denote the number of disjoint cycles appearing in the FFPA form of $1 / 4$ (Don't forget that each ${ }^{-}$xed point of $1 / 4$ contributes one to \# cycles(1/4):)
(a) Determine the minimum value of $\#$ cycles(¹/4 for $1 / 42 S_{10}$: 1
(b) Determine the maximum value of $\# \operatorname{cycles}(1 / 4)$ for $1 / 42 S_{10}$: 10
(c) Estimate the average value of \# cycles($1 / 4$ for $1 / 42 S_{10}$: $\quad 1 / 4$ X^{10} $\frac{1}{\mathrm{k}}=\frac{7381}{2520} 1 / 42: 929:$ For those students who have had $\mathrm{k}=1$ calculus it is worth a quick geometrical discussion of why this estimate is trying to look like $\ln 101 / 42: 303$
(d) Generalize to S_{n} : $1 ; n ;{ }_{k=1}^{X^{n}} \frac{1}{k} 1 / 4 \ln n$: Comment. I do the previous four items as a classroom discussion exercise by partitioning the class into teams (two or three students per team), providing each team with a random sample of 50 pemutations from S_{10} using M agma (for i in [1..500] do print Random(SymmetricGroup(10); end for;), and recording the
relevant counts on the board in the following format.

Sample	\# 1-cycles	\# 2-cycles	\# 3-cycles	\# 4-cycles	\# 5-cycles	\# cycles
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
Total						
Average						

Discussion ensues.
5. Compute the following products:
(a) $(1 ; 2 ; 3 ; 4 ; 5)(6 ; 7 ; 8)(9 ; 10) \not \subset 2 ; 7)$
$=(1 ; 7 ; 8 ; 6 ; 2 ; 3 ; 4 ; 5)(9 ; 10)$
(b) $(1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8)(9 ; 10) \not \subset 2 ; 7)=(1 ; 7 ; 8)(2 ; 3 ; 4 ; 5 ; 6)(9 ; 10)$
6. Let $1 / 4$ be written in FFPA form and let i bea transposition. Generate data until you can write a formula for \# cycles $(1 / 2)$ in terms of \# cycles $(1 / 2)$:Start by computing the following two products.
(a) $(1 ; 2 ; 3 ; 4 ; 5)(6 ; 7 ; 8)(9 ; 10) \nsubseteq 2 ; 7): \quad=(1 ; 7 ; 8 ; 6 ; 2 ; 3 ; 4 ; 5)(9 ; 10)$
(b) $(1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8)(9 ; 10) \nless 2 ; 7)$: $=(1 ; 7 ; 8)(2 ; 3 ; 4 ; 5 ; 6)(9 ; 10)$
${ }^{8}$ \# $\operatorname{cycles}(1 / 2)$; 1 if the symbols of i occur in di ®erent cycles of $1 / 4$ \# cycles $(1 / 2)=$: \# cycles $(1 / 2+1$ if the symbols of i occur in a common cycles of $1 / 4$
Comment. This result is used later in the chapter to prove that the even permutations of S_{n} form a subgroup of S_{n}.

