Answers and Comments to Exercises

Exercise 1.4.2

1. Determine the number of association schemes for evaluating a product of four permutations.

2. Determine the number of association schemes for evaluating a product of $\overline{\ }$ ve permutations. Let a_n denote the number of association schemes for a product of n + 1 permuations (i.e., n multiplication symbols are used). We have that

$$a_0 = 1; a_1 = 1; a_2 = 2; a_3 = 5$$

by listing and counting the possibilities. Listing is productive when you get to n = 4 if you recognize that the association schemes can be organized using the `naked' multiplication symbol that must appear in each association scheme.

1

$$({}^{\textcircled{R}} \, \mathfrak{c}^{-} \, \mathfrak{c}^{\circ} \, \mathfrak{c}^{\pm}) \, \mathfrak{c}^{"} \, \overset{(\textcircled{R}}{\mathfrak{c}} \, (\left[\begin{array}{c} \circ \, \mathfrak{c}^{\pm} \, \mathfrak{c}^{\pm}$$

3. Can you generalize the previous two counts to a product of n permutations?

$$a_{n+1} = \sum_{i=0}^{\mathbf{X}} a_i \, \mathfrak{c} \, a_{n_i \, i}$$

Exercise 1.4.3

1.	Evaluate	µ¢id:	μ
2.	Evaluate	id¢µ:	μ

Exercise 1.4.4

1. Exhibit two cycles, say \tilde{A}_1 and $\tilde{A}_2,$ in S_8 which do not satisfy

$$\tilde{A}_1\tilde{A}_2 = \tilde{A}_1\tilde{A}_2.$$

$$(1; 2)(1; 3) = (1; 2; 3) \leftrightarrow (1; 3; 2) = (1; 3)(1; 2)$$

2. What is it about $^{(R)} = (1; 4)$ and $^{-} = (2; 7; 5; 8; 3)$ that guarantees

$$\mathbb{R}$$
 $=$ \mathbb{C} \mathbb{R} ?

The cycles are disjoint (so they don't `interact').

Complete a commutativity matrix for S₃: Put a 1 (0) at the intersection of the ¾-th row and ¿-th column of the following array if ¾¿ = ¿¾ (¾¿ 6 ¿¾).

	id	(1; 2; 3)	(1; 3; 2)	(1;2)	(2;3)	(1;3)
id	1	1	1	1	1	1
(1; 2; 3)	1	1	1	0	0	0
(1; 3; 2)	1	1	1	0	0	0
(1;2)	1	0	0	1	0	0
(2;3)	1	0	0	0	1	0
(1;3)	1	0	0	0	0	1

- 4. Determine the probability that two elements of S_3 commute; i.e., the probability that $\frac{3}{2} = \frac{13}{4}$ for $\frac{3}{4}$; $\frac{18}{2} = \frac{663}{666} = \frac{3}{6}$
- 5. Complete a commutativity matrix for S_4 and determine the probability that two elements of S_4 commute. $\frac{120}{576} = \frac{24\varepsilon 5}{24\varepsilon 24} = \frac{5}{24}$
- 6. Determine the probablility that two elements of $S_5;\,S_6;\,$ and S_7 commute.

CommPairs := function(n); Count := 0; for Pi in SymmetricGroup(n) do for Tau in SymmetricGroup(n) do if Pi*Tau eq Tau*Pi then Count := Count + 1; end if; end for; return Count; end for; return Count; end function; print CommPairs(5); $\frac{840}{(5!)^2} = \frac{5!t7}{(5!)^2} = \frac{7}{5!}$

1.

3

print CommPairs(6);
7920
$$\frac{7920}{(6!)^2} = \frac{6!(11)}{(6!)^2} = \frac{11}{6!}$$
print CommPairs(7);
75600
$$\frac{75600}{(7!)^2} = \frac{7!(15)}{(7!)^2} = \frac{15}{7!}$$

Comment. These probabilities are structured to suggest that there is a pattern waiting to be discovered. In particular we will eventually recognize that through n = 7 the probabilites are the ratio of the number of partitions of n to the cardinality of S_n . This observation will nally be explained in terms of Burnside's Lemma.

2. Estimate the probability that two elements of S_8 and $S_{\rm 52}$ commute.

```
EstCommPairs1000:= function(n);
Count := 0;
for i in [1..1000] do
Pi := Random(SymmetricGroup(n));
Tau := Random(SymmetricGroup(n));
if Pi*Tau eq Tau*Pi then
Count := Count + 1;
end if;
```

1.

end for;

return Count;

end function;

```
print EstCommPairs1000(8);

1 Estimated probability \frac{1}{1000}

print EstCommPairs1000(52);

0 Estimated probability \frac{0}{1000}
```

2. How does the probability that two elements of S_n commute behave as n ! 1 ? The following Magma code

4

for n in [1..100] do print EstCommPairs1000(n); end for; should convince the students the probabiliity is very close to zero.

Exercise 1.4.5

The process of getting dressed after your morning shower is a composition of several dressing `factors'. Two of these factors are a (putting on your socks) and b (putting on your shoes). Check to see that

ab 台 ba:

Comment. Walking into the classroom with a sock over one of your shoes makes this point quite clear.

Exercise 1.4.6

- 1. Use the FFPA to represent elements of S_n until the process is second nature to you. Here are a few in S_9 to get you started:
 - (a) (2; 3; 7)(1; 3; 9; 7)(2; 7; 5) = (1; 3)(2; 9; 5)
 - (b) (1;5)(5;6)(2;7;9)(5;4) = (1;6;4;5)(2;7;9)
 - (c) (2; 7; 5; 3; 4)(8; 9)(1; 5; 2; 6)(8; 9) = (1; 5; 3; 4; 6)(2; 7)
 - (d) (1; 2)(1; 3)(1; 4)(1; 5)(1; 6)(1; 7)(1; 8)(1; 9) = (1; 2; 3; 4; 5; 6; 7; 8; 9)
- 2. The FFPA `form' of a permutation in S_n induces a natural partition of n because each element of N_n occurs in one, and only one, cycle of the permutation. For example, the form (v; w; x)(y; z),

which is the `same' as the form (v; w)(x; y; z), induces the partition [3; 2] of $\neg ve$. Complete the following table for S_5 .

Form	Cardinality	Partitionof 5
(v;w;x;y;z)	$\frac{5!}{5} = 4! = 24$	[5]
(v;w;x;y)(z)	$\frac{5040302}{4} = 30$	[4; 1]
(v;w;x)(y;z)	$\frac{56463}{3}$ ¢ $\frac{261}{2}$ = 20	[3; 2]
(v; w; x)(y)(z)	$\frac{5t4t3}{3}$ $\xi \frac{2t1}{2!} = 20$	$[3; 1; 1] = [3; 1^2]$
(v;w)(x;y)(z)	$\frac{\frac{544}{2}\frac{542}{2}}{2} = 15$	$[2; 2; 1] = [2^2; 1]$
(v; w)(x)(y)(z)	$\frac{504}{2} \sqrt[6]{\frac{30201}{31}} = 10$	$[2; 1; 1; 1] = [2; 1^3]$
(v)(w)(x)(y)(z)	$\frac{564636261}{5!} = 1$	$[1; 1; 1; 1; 1] = [1^5]$

Comment. An equivalence relation on permutations is rearing its head without waiting for a formal de⁻nition. This is also a good time to emphasize structured counting, even though counting techniques have yet to be developed.

3. Complete the analogous table for S_4 :

Form	Cardinality	Partition of 4
(v; w; x; y)	$\frac{4!}{4} = 3! = 6$	[4]
(v; w; x)(y)	$\frac{(4(3))}{3} = 8$	[3; 1]
(v;w)(x;y)	$\frac{\frac{4t_3}{2}t_2^{2t_1}}{2} = 3$	$[2; 2] = [2^2]$
(v; w)(x)(y)	$\frac{4t_3}{2} \xi \frac{2t_1}{2t} = 6$	$[2; 1; 1] = [2; 1^2]$
(v)(w)(x)(y)	$\frac{4(3(2))}{4!} = 1$	$[1; 1; 1; 1] = [1^4]$

- 4. Why are the forms (v; w; x)(y; z) and (v; w)(x; y; z) the same? The cycles are disjoint so (v; w)(x; y; z) = (x; y; z)(v; w); i.e., both forms look like (a; b; c)(d; e):
- 5. Which is larger (and why), the number of partitions of n or n!? The larger is n! because each partition of n corresponds (in a natural way via the FFPA) to one or more permutations.
- 6. Let $\frac{1}{6}$ = (1; 6; 3)(2; 7; 5; 4) 2 S₇. Record the successive powers of

 $\frac{1}{4}$ ($\frac{1}{4}$; $\frac{1}{4}$ ($\frac{1}{4}$) = $\frac{1}{4}^{2}$; $\frac{1}{4}$ ($\frac{1}{4}$) ($\frac{1}{4}$) = $\frac{1}{4}^{3}$; etc.) in FFPA form.

$$\begin{array}{rcl} \label{eq:4} \label{eq:4} &=& (1;6;3)(2;7;5;4) \\ \label{eq:4} \label{eq:4} \label{eq:4} \label{eq:4} \\ \label{eq:4} \label{eq:$$

Comment. After the students produce this data by hand I give them the relevant Magma code:

```
S7 := SymmetricGroup(7);
Pi := S7!(1,6,3)(2,7,5,4);
for n in [1..15] do
    print n, Pi^n;
end for;
```

- 1. Let #1-cycles(¼) denote the number of 1-cycles (⁻xed points) appearing in the FFPA form of ¼:
 - (a) Determine the minimum value of #1-cycles(%) for % 2 S₁₀: 0
 - (b) Determine the maximum value of #1-cycles(\$) for \$2 S₁₀: 10
 - (c) Estimate the average value of #1-cycles(¼) for ½ 2 S_{10} : ¼ 1
 - (d) Generalize to S_n : 0; n; 1
- Let #2-cycles(¼) denote the number of 2-cycles (transpositions) appearing in the FFPA form of ¼:

- (a) Determine the minimum value of #2-cycles($\frac{1}{2}$) for $\frac{1}{2} 2 S_{10}$: 0
- (b) Determine the maximum value of #2-cycles($\frac{1}{2}$) for $\frac{1}{2} 2 S_{10}$: 5
- (c) Estimate the average value of #2-cycles(¼) for ¼ 2 S₁₀: ¼ $\frac{1}{2}$
- (d) Generalize to S_n : 0; $\frac{{\bf Y}_n}{2}$; $\frac{1}{2}$
- 3. Generalize your observations in 1 and 2 to #k-cycles(¼) in S_n : 0; $\frac{4}{k}n^{\dagger}$; ¼ $\frac{1}{k}$
- Let #cycles(¼) denote the number of disjoint cycles appearing in the FFPA form of ¼. (Don't forget that each ⁻xed point of ¼ contributes one to #cycles(¼):)
 - (a) Determine the minimum value of #cycles(%) for % 2 S₁₀: 1
 - (b) Determine the maximum value of #cycles(¼) for ¼ 2 S₁₀: 10
 - (c) Estimate the average value of #cycles(¼) for ¼ 2 S₁₀: ¼ X° $\frac{1}{k} = \frac{7381}{2520}$ ¼ 2:929: For those students who have had

k=1 calculus it is worth a quick geometrical discussion of why this estimate is trying to look like ln 10 $\frac{1}{4}$ 2: 303

(d) Generalize to S_n : 1; n; $\bigwedge_{k=1}^{K} \frac{1}{k} \frac{1}{k} \ln n$: Comment. I do the previous four items as a classroom discussion exercise by partitioning the class into teams (two or three students per team), providing each team with a random sample of 50 pemutations from S_{10} using Magma (for i in [1..500] do print Random(SymmetricGroup(10); end for;), and recording the

9

#cycles Sample #1-cycles #2-cycles #3-cycles #4-cycles #5-cycles 1 2 3 4 5 6 7 8 9 10 Total Average

relevant counts on the board in the following format.

Discussion ensues.

5. Compute the following products:

(a) $(1; 2; 3; 4; 5)(6; 7; 8)(9; 10)(2; 7) = (1; 7; 8; 6)(6; 7; 8)(9; 10)(2; 7)$
--

- (b) (1; 2; 3; 4; 5; 6; 7; 8)(9; 10) (2; 7) = (1; 7; 8)(2; 3; 4; 5; 6)(9; 10)
- 6. Let ¼ be written in FFPA form and let ¿ be a transposition. Generate data until you can write a formula for #cycles(¼¿) in terms of #cycles(¼):Start by computing the following two products.
 - (a) (1; 2; 3; 4; 5)(6; 7; 8)(9; 10)(2; 7): = (1; 7; 8; 6; 2; 3; 4; 5)(9; 10)(b) (1; 2; 3; 4; 5; 6; 7; 8)(9; 10)(2; 7): = (1; 7; 8)(2; 3; 4; 5; 6)(9; 10) $\bigotimes_{<} \# cycles(\%) = (1; 7; 8)(2; 3; 4; 5; 6)(9; 10)$ $\# cycles(\%) = : \# cycles(\%) + 1 if the symbols of <math>\natural$ occur in di[®]erent cycles of %: # cycles(%) + 1 if the symbols of \natural occur in a common cycles of %:

Comment. This result is used later in the chapter to prove that the even permutations of S_n form a subgroup of S_n .