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Answers and Comments to Exercises
Section 1.4

Exercise 1.4.2

1. Determine the number of association schemes for evaluating a
product of four permutations.

® ¢ (¯ ¢ (° ¢ ±))
® ¢ ((¯ ¢ °) ¢ ±)
(® ¢ ¯) ¢ (° ¢ ±)
(® ¢ (¯ ¢ °)) ¢ ±
((® ¢ ¯) ¢ °) ¢ ±

9
>>>>=
>>>>;
5

2. Determine the number of association schemes for evaluating a
product of ¯ve permutations. Let an denote the number of
association schemes for a product of n + 1 permuations (i.e., n
multiplication symbols are used). We have that

a0 = 1; a1 = 1; a2 = 2; a3 = 5

by listing and counting the possibilities. Listing is productive
when you get to n = 4 if you recognize that the association
schemes can be organized using the `naked' multiplication symbol
that must appear in each association scheme.

® ¢
"
(¯ ¢ ° ¢ ± ¢ ") $

® ¢ (¯ ¢ (° ¢ (± ¢ ")))
® ¢ (¯ ¢ ((° ¢ ±) ¢ ")))
® ¢ ((¯ ¢ °) ¢ (± ¢ "))
® ¢ ((¯ ¢ (° ¢ ±)) ¢ ")
® ¢ (((¯ ¢ °) ¢ ±) ¢ ")

9
>>>>=
>>>>;
5 = a0 ¢ a3

(® ¢ ¯) ¢
"
(° ¢ ± ¢ ") $ (® ¢ ¯) ¢ (° ¢ (± ¢ "))

(® ¢ ¯) ¢ ((° ¢ ±) ¢ ")

¾
2 = a1 ¢ a2

(® ¢ ¯ ¢ °) ¢
"
(± ¢ ") $ (® ¢ (¯ ¢ °)) ¢ (± ¢ ")

((® ¢ ¯) ¢ °) ¢ (± ¢ ")

¾
2 = a2 ¢ a1
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(® ¢ ¯ ¢ ° ¢ ±) ¢
"
" $

(® ¢ (¯ ¢ (° ¢ ±))) ¢ "
(® ¢ ((¯ ¢ °) ¢ ±)) ¢ "
((® ¢ ¯) ¢ (° ¢ ±)) ¢ "
((® ¢ (¯ ¢ °)) ¢ ±) ¢ "
(((® ¢ ¯) ¢ °) ¢ ±) ¢ "

9
>>>>=
>>>>;
5 = a0 ¢ a3

a4 = 14 = 5+2+2+4 = a0 ¢a3+a1 ¢a2+a2 ¢a1+a3 ¢a0 =
3X

i=0

aia3¡i

3. Can you generalize the previous two counts to a product of n
permutations?

an+1 =
nX

i=0

ai ¢ an¡i

Exercise 1.4.3

1. Evaluate µ ¢ id: µ

2. Evaluate id ¢ µ: µ

Exercise 1.4.4

1. Exhibit two cycles, say Ã1 and Ã2, in S8 which do not satisfy

Ã1Ã2 = Ã1Ã2.

(1; 2)(1; 3) = (1; 2; 3) 6= (1; 3; 2) = (1; 3)(1; 2)

2. What is it about ® = (1; 4) and ¯ = (2; 7; 5; 8; 3) that guarantees

® ¢ ¯ = ¯ ¢ ®?

The cycles are disjoint (so they don't `interact').
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3. Complete a commutativity matrix for S3: Put a 1 (0) at the
intersection of the ¾-th row and ¿ -th column of the following array
if ¾¿ = ¿¾ (¾¿ 6= ¿¾).

id (1; 2; 3) (1; 3; 2) (1; 2) (2; 3) (1; 3)
id 1 1 1 1 1 1

(1; 2; 3) 1 1 1 0 0 0
(1; 3; 2) 1 1 1 0 0 0
(1; 2) 1 0 0 1 0 0
(2; 3) 1 0 0 0 1 0
(1; 3) 1 0 0 0 0 1

4. Determine the probability that two elements of S3 commute; i.e.,
the probability that ¾¿ = ¿¾ for ¾; ¿ 2 S3: 18

36
= 6¢3

6¢6 =
3
6

5. Complete a commutativity matrix for S4 and determine the prob-
ablility that two elements of S4 commute. 120

576
= 24¢5

24¢24 =
5
24

6. Determine the probablility that two elements of S5; S6; and S7
commute.

CommPairs := function(n);
Count := 0;
for Pi in SymmetricGroup(n) do
for Tau in SymmetricGroup(n) do

1. if Pi*Tau eq Tau*Pi then

Count := Count + 1;

end if;

end for;

end for;

return Count;

end function;

print CommPairs(5);
840

840
(5!)2

= 5!¢7
(5!)2

= 7
5!
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print CommPairs(6);
7920

7920
(6!)2

= 6!¢11
(6!)2

= 11
6!

print CommPairs(7);
75600

75600
(7!)2

= 7!¢15
(7!)2

= 15
7!

Comment. These probabilities are structured to suggest that
there is a pattern waiting to be discovered. In particular we will
eventually recognize that through n = 7 the probabilites are the
ratio of the number of partitions of n to the cardinality of Sn.
This observation will ¯nally be explained in terms of Burnside's
Lemma.

2. Estimate the probability that two elements of S8 and S52 com-
mute.

EstCommPairs1000:= function(n);
Count := 0;
for i in [1..1000] do
Pi := Random(SymmetricGroup(n));
Tau := Random(SymmetricGroup(n));
if Pi*Tau eq Tau*Pi then
Count := Count + 1;

end if;

1. end for;

return Count;

end function;

print EstCommPairs1000(8);
1

Estimated probability 1
1000

print EstCommPairs1000(52);
0

Estimated probability 0
1000

2. How does the probability that two elements of Sncommute behave
as n ! 1? The following Magma code
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for n in [1..100] do

print EstCommPairs1000(n);

end for;

should convince the students the probabiliity is very close to zero.

Exercise 1.4.5

The process of getting dressed after your morning shower is a com-
position of several dressing `factors'. Two of these factors are a (putting
on your socks) and b (putting on your shoes). Check to see that

ab 6= ba:

Comment. Walking into the classroom with a sock over one of
your shoes makes this point quite clear.

Exercise 1.4.6

1. Use the FFPA to represent elements of Sn until the process is
second nature to you. Here are a few in S9 to get you started:

(a) (2; 3; 7)(1; 3; 9; 7)(2; 7; 5) = (1; 3)(2; 9; 5)

(b) (1; 5)(5; 6)(2; 7; 9)(5; 4) = (1; 6; 4; 5)(2; 7; 9)

(c) (2; 7; 5; 3; 4)(8; 9)(1; 5; 2; 6)(8; 9) = (1; 5; 3; 4; 6)(2; 7)

(d) (1; 2)(1; 3)(1; 4)(1; 5)(1; 6)(1; 7)(1; 8)(1; 9) = (1; 2; 3; 4; 5; 6; 7; 8; 9)

2. The FFPA `form' of a permutation in Sn induces a natural parti-
tion of n because each element of Nn occurs in one, and only one,
cycle of the permutation. For example, the form (v; w; x)(y; z),
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which is the `same' as the form (v; w)(x; y; z), induces the parti-
tion [3; 2] of ¯ve. Complete the following table for S5.

Form Cardinality Partitionof 5
(v; w; x; y; z) 5!

5
= 4! = 24 [5]

(v; w; x; y)(z) 5¢4¢3¢2
4

= 30 [4; 1]
(v; w; x)(y; z) 5¢4¢3

3
¢ 2¢1
2
= 20 [3; 2]

(v; w; x)(y)(z) 5¢4¢3
3

¢ 2¢1
2!
= 20 [3; 1; 1] = [3; 12]

(v; w)(x; y)(z)
5¢4
2
¢ 3¢2
2

2
= 15 [2; 2; 1] = [22; 1]

(v; w)(x)(y)(z) 5¢4
2

¢ 3¢2¢1
3!
= 10 [2; 1; 1; 1] = [2; 13]

(v)(w)(x)(y)(z) 5¢4¢3¢2¢1
5!

= 1 [1; 1; 1; 1; 1] = [15]

Comment. An equivalence relation on permutations is rearing
its head without waiting for a formal de¯nition. This is also a
good time to emphasize structured counting, even though count-
ing techniques have yet to be developed.

3. Complete the analogous table for S4:

Form Cardinality Partition of 4
(v; w; x; y) 4!

4
= 3! = 6 [4]

(v;w; x)(y) ¢4¢3¢2
3
= 8 [3; 1]

(v;w)(x; y)
4¢3
2
¢ 2¢1
2

2
= 3 [2; 2] = [22]

(v;w)(x)(y) 4¢3
2

¢ 2¢1
2!
= 6 [2; 1; 1] = [2; 12]

(v)(w)(x)(y) 4¢3¢2¢1
4!

= 1 [1; 1; 1; 1] = [14]

4. Why are the forms (v; w; x)(y; z) and (v; w)(x; y; z) the same?
The cycles are disjoint so (v;w)(x; y; z) = (x; y; z)(v; w); i.e., both
forms look like (a; b; c)(d; e):

5. Which is larger (and why), the number of partitions of n or n!?
The larger is n! because each partition of n corresponds (in a
natural way via the FFPA) to one or more permutations.

6. Let ¼ = (1; 6; 3)(2; 7; 5; 4) 2 S7. Record the successive powers of
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¼ (¼; ¼ ¢ ¼ = ¼2; ¼ ¢ ¼ ¢ ¼ = ¼3; etc.) in FFPA form.

¼ = (1; 6; 3)(2; 7; 5; 4)
¼2 = (1; 3; 6)(2; 5)(4; 7)
¼3 = (2; 4; 5; 7)
¼4 = (1; 6; 3)
¼5 = (1; 3; 6)(2; 7; 5; 4)
¼6 = (2; 5)(4; 7)
¼7 = (1; 6; 3)(2; 4; 5; 7)
¼8 = (1; 3; 6)
¼9 = (2; 7; 5; 4)
¼10 = (1; 6; 3)(2; 5)(4; 7)
¼11 = (1; 3; 6)(2; 4; 5; 7)
¼12 = id
¼13 = (1; 6; 3)(2; 7; 5; 4)
¼14 = (1; 3; 6)(2; 5)(4; 7)
¼15 = (2; 4; 5; 7)

Comment. After the students produce this data by hand I give
them the relevant Magma code:

S7 := SymmetricGroup(7);
Pi := S7!(1,6,3)(2,7,5,4);
for n in [1..15] do
print n, Pi^n;

end for;

1. Let #1-cycles(¼) denote the number of 1-cycles (¯xed points)
appearing in the FFPA form of ¼:

(a) Determine the minimum value of #1-cycles(¼) for ¼ 2 S10: 0

(b) Determine the maximum value of #1-cycles(¼) for ¼ 2 S10: 10

(c) Estimate the average value of #1-cycles(¼) for ¼ 2 S10: ¼
1

(d) Generalize to Sn: 0; n; 1

2. Let #2-cycles(¼) denote the number of 2-cycles (transpositions)
appearing in the FFPA form of ¼:
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(a) Determine the minimum value of #2-cycles(¼) for ¼ 2 S10: 0

(b) Determine the maximum value of #2-cycles(¼) for ¼ 2 S10: 5

(c) Estimate the average value of #2-cycles(¼) for ¼ 2 S10: ¼
1
2

(d) Generalize to Sn: 0;
¥
n
2

¦
; 1
2

3. Generalize your observations in 1 and 2 to #k-cycles(¼) in Sn: 0;
¥
n
k

¦
;¼

1
k

4. Let #cycles(¼) denote the number of disjoint cycles appearing in
the FFPA form of ¼. (Don't forget that each ¯xed point of ¼
contributes one to #cycles(¼):)

(a) Determine the minimum value of #cycles(¼) for ¼ 2 S10: 1

(b) Determine the maximum value of #cycles(¼) for ¼ 2 S10: 10

(c) Estimate the average value of #cycles(¼) for ¼ 2 S10: ¼
10X

k=1

1
k
= 7381

2520
¼ 2: 929: For those students who have had

calculus it is worth a quick geometrical discussion of why
this estimate is trying to look like ln 10 ¼ 2: 303

(d) Generalize to Sn: 1; n;
nX

k=1

1
k

¼ lnn: Comment. I

do the previous four items as a classroom discussion exercise
by partitioning the class into teams (two or three students
per team), providing each team with a random sample of 50
pemutations from S10 using Magma (for i in [1..500] do print
Random(SymmetricGroup(10); end for;), and recording the
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relevant counts on the board in the following format.

Sample #1-cycles #2-cycles #3-cycles #4-cycles #5-cycles #cycles
1
2
3
4
5
6
7
8
9
10
Total
Average

Discussion ensues.

5. Compute the following products:

(a) (1; 2; 3; 4; 5)(6; 7; 8)(9; 10)¢(2; 7) = (1; 7; 8; 6; 2; 3; 4; 5)(9; 10)

(b) (1; 2; 3; 4; 5; 6; 7; 8)(9; 10)¢(2; 7) = (1; 7; 8)(2; 3; 4; 5; 6)(9; 10)

6. Let ¼ be written in FFPA form and let ¿ be a transposition. Gen-
erate data until you can write a formula for #cycles(¼¿ ) in terms
of #cycles(¼):Start by computing the following two products.

(a) (1; 2; 3; 4; 5)(6; 7; 8)(9; 10)¢(2; 7): = (1; 7; 8; 6; 2; 3; 4; 5)(9; 10)

(b) (1; 2; 3; 4; 5; 6; 7; 8)(9; 10)¢(2; 7): = (1; 7; 8)(2; 3; 4; 5; 6)(9; 10)

#cycles(¼¿) =

8
<
:
#cycles(¼)¡ 1 if the symbols of ¿ occur in di®erent cycles of ¼:

#cycles(¼) + 1 if the symbols of ¿ occur in a common cycles of ¼:

Comment. This result is used later in the chapter to prove
that the even permutations of Sn form a subgroup of Sn.


