
ECE-597: Probability, Random Processes, and Estimation
Homework # 8

Due: Friday May 13, 2016

Background Formulas

We begin with two general (and identical) relationships derived in class.

x̂|k = x̂|k−1 +RxεkR
−1
εkεk

εk (1)

x̂|k =
k∑

j=0

RxεjR
−1
εkεj

εj (2)

where x̂|k−1 is the linear least square estimate of x given observations {y0, y1, ...yk−1}, x̂|k is
the linear least square estimate of x given observations {y0, y1, ..., yk}, and εk = yk − ŷk|k−1

is a measure of new information or innovation in yk that could not have been predicted by
the previous observations {y0, y1, ...yk−1}. By construction, x̂|k is orthogonal to {y0, ...yk}
and εk is orthogonal to {y0, ..., yk−1}.

Observations Linearly Related to the Unknown

Assume the observed sequence yk is related to the xk through

yk = Hkxk + vk

where E[vkv
T
l ] = Rkδkl (white noise) and E[xkv

T
l ] = 0 (noise uncorrelated with signal.) Now

define

εk = yk − ŷk|k−1

= yk −Hkx̂k|k−1

where ŷk is the l.l.s.e. of yk given the observations {y0, ..., yk−1} and x̂k|k−1 is the l.l.s.e. of
xk given {y0, ..., yk−1}. Now define

x̃k|k−1 = xk − x̂k|k−1

so that x̃k|k−1 is the prediction error.

(1) Show that

εk = Hkx̃k|k−1 + vk

(2) Show that

E[εkε
T
k ] = E[Hkx̃k|k−1x̃

T
k|k−1H

T
k ] + E[vkx̃

T
k|k−1H

T
k ] + E[Hkx̃k|k−1v

T
k ] + E[vkv

T
k ]
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(3) Defining
Pk|k−1 = E[x̃k|k−1x̃

T
k|k−1]

where Pk|k−1 is the error covariance matrix, show that the expression in part 2 reduces to

E[εkε
T
k ] = HkPk|k−1H

T
k +Rk

We will define this as
Rε

k = E[εkε
T
k ]

(4) Substituting xk for x in equation 1 yields

x̂k|k = x̂k|k−1 +Rxkεk(R
ε
k)

−1εk

= x̂k|k−1 +Rxkεk(R
ε
k)

−1(yk −Hkx̂k|k−1)

Now,

Rxkεk = E[xkε
T
k ]

= E[xk(Hkx̃k|k−1 + vk)
T ]

= E[xkx̃
T
k|k−1]H

T
k

Show that

Pk|k−1 = E[xkx̃
T
k|k−1]

and hence that

Rxkεk = Pk|k−1H
T
k

We will define this as
Kk = Rxkεk

So far we have

x̂k|k = x̂k|k−1 +Kk(R
ε
k)

−1(yk −Hkx̂k|k−1)

x̂k|k = x̂k|k−1 +Kk(R
ε
k)

−1εk

where x̂k|k is the l.l.s.e. of xk based on observations {y0, ..., yk}, x̂k|k−1 is the l.l.s.e. of xk

given observations {y0, ..., yk−1}, Kk(R
ε
k) is the gain, and (yk−Hkx̂k|k−1) is the error between

the prediction and the observation at time k. Now we will examine how the error covariance
matrix, Pk evolves.

(5) Starting from the definition
Pk|k = E[x̃k|kx̃T

k|k]

show that

Pk|k = E[xk(xk − x̂k|k−1)
T ]− E[xkε

T
k ](R

ε
k)

−1KT
k

−E[x̂k|k−1(xk − x̂k|k−1)
T ] + E[x̂k|k−1ε

T
k ](R

ε
k)

−1KT
k

−Kk(R
ε
k)

−1E[εkx
T
k ] +Kk(R

ε
k)

−1E[εkx̂
T
k|k−1]

+Kk(R
ε
k)

−1E[εkε
T
k ](R

ε
k)

−1KT
k

and show that, by analyzing each term, this can be reduced to
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Pk|k = Pk|k−1 −Kk(R
ε
k)

−1KT
k

Hints: (1) use the result from part 1, (2) the results for the second, fifth, and seventh term
are the same, (3) most of the remaining terms can be shown to be zero using orthogonality.

State Space Signal Models

Now we assume we know some dynamics:

xk+1 = Φkxk + Γkwk

and the observation part remains the same:

yk = Hkxk + vk

We assume here that E[wkv
T
k ] = 0, Rww(k, l) = Qkδkl, E[wkx

T
0 ] = 0,E[wk] = 0, E[X0X

T
0 ] =

Π0, Rvv(k, l) = Rkδkl, E[xkv
T
l ] = 0, and and Φk,Γk, Qk,Π0, Rk, and Hk are known matrices.

(6) Argue that

x̂k+1|k = Φkx̂k|k + Γkŵk|k

and, hence

x̂k+1|k = Φkx̂k|k

Specifically, why is ŵk|k 0? Hint: ŵk|k is construncted from the observations {y0, ...yk}.
Hence, since we have already shown that

x̂k|k = x̂k|k−1 +Kk(R
ε
k)

−1
{
yk −Hkx̂k|k−1

}

we have

x̂k+1|k = Φkx̂k|k−1 + ΦkKk(R
ε
k)

−1
{
yk −Hkx̂k|k−1

}

where x0|−1 is defined to be zero.

(7) Now define

Σk+1|k = E[x̂k+1|kx̂T
k+1|k]

Show that

Σk+1|k = ΦkΣk|k−1Φ
T
k + ΦkKk(R

ε
k)

−1KT
k Φ

T
k

where Σ0|−1 is defined to be zero. : Hints: (1) Rε
k is symmetric, and (2) εk = yk −Hkx̂k|k−1

is the innovation, and is orthogonal to {y0, ..., yk−1}.

(8) Define

Πk+1 = E[xk+1x
T
k+1]

and show that
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Πk+1 = ΦkΠkΦ
T
k + ΓkQkΓ

T
k

(9) Recall the error covariance matrix is given by

Pk+1|k = E[x̃k+1|kx̃T
k+1|k]

show that

Pk+1|k = Πk+1 − Σk+1|k

= Φk

{
Πk − Σk|k−1

}
ΦT

k + ΓkQkΓ
T
k − ΦkKk(R

ε
k)

−1KT
k Φ

T
k

and, finally,

Pk+1|k = ΦkPk|k−1Φ
T
k + ΓkQkΓ

T
k − ΦkKk(R

ε
k)

−1KT
k Φ

T
k

Hints: (1) Use the identities

E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T ] = E[xk+1x
T
k+1]− E[x̂k+1|k(xk+1 − x̂k+1|k)T ]− E[xk+1x̂

T
k+1|k]

(2) Use orthogonality for the second term, and then use the trick

E[xk+1x̂
T
k+1|k] = E[(xk+1 − x̂k+1|k + x̂k+1|k)x̂T

k+1|k]

Summary of Equations

The recursive equations for the Kalman filter are:

x̂k+1|k = Φkx̂k|k−1 + ΦkKk(R
ε
k)

−1
{
yk −Hkx̂k|k−1

}

where

x̂0|−1 = 0

P0|−1 = Π0

Rε
k = HkPk|k−1H

T
k +Rk

Kk = Pk|k−1H
T
k

Pk+1|k = ΦkPk|k−1Φ
T
k + ΓkQkΓ

T
k − ΦkKk(R

ε
k)

−1KT
k Φ

T
k

There are, of course, alternative forms of the filter and alternative derivations.

(10) Using the Kalman filter equations, show that

x̂1|0 = Φ0Π0H
T
0 (H0Π0H

T
0 +R0)

−1y0

(11) Using the orthogonality condition determine the least squares estimator

x̂1|0 = αy0

directly, i.e. determine the optimal α.
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Computer Assignment

This part of the assignment can be done independently of the derivation. You mostly just
play around with code. In all of your computer runs, look at 500 and 1500 time steps. You
can get the code from the class website.

(1) We will now use the Kalman filter as an to estimate the parameters of a simple autore-
gressive model with fixed coefficients (i.e., a1 and a2 are fixed). Specifically, assume

yk = −a1yk−1 +−a2yk−2 + vk

were vk is a white noise sequence with variance R.

Here xk is our estimate of the coefficient for the AR process, Hk = [yk−1 yk−2],and Q is noise
in the model. We will then set Φ and Γ equal to the identity matrix. Note that with this
formulation, we are assuming the estimates do not change from one time instant to the next,
which is a good assumption for constant coefficients, but not so good if they are time varying.

2) For the problem stated in (1), simulate the AR process with a1 = 0.7, a2 = 0.12, and
R = 0.05 and Qk = 0.05 (assume Q is diagonal), and determine the estimate of the coeffi-
cients as a function of time. Plot these estimates versus the true values for 500 and 1500
time steps. Turn in your graphs.

3) Modify Q (leave R at 0.05) to try and get a good estimate of the coefficients. Run your
simulations for 500 and 1500 time steps, and turn in your graphs.

4) Now we will assume our parameters are changing as a function of time. Specifically,
assume

a1(k) = 0.4 + 0.5 cos(3πk/200)

a2(k) = 0.5 + 0.3 sin(2πk/200)

5) For the problem stated in (4), simulate the AR process using and R = 0.05 and Qk = 0.05
(assume Q is diagonal), and determine the estimate of the coefficients as a function of time.
Plot these estimates versus the true values for 500 and 1500 time steps. Turn in your graphs.

6) Modify R andQ to try and get a good estimates of the coefficients, and turn in your graphs.

7) Now we will again assume our parameters are changing as a function of time. Specifically,
assume

a1(k) = 0.4 + 0.5 cos(3πk/200)

a2(k) = 1.5 + 0.3 sin(2πk/200)

8) For the problem stated in (7), simulate the AR process using and R = 0.05 and Qk = 0.05
(assume Q is diagonal), and determine the estimate of the coefficients as a function of time.
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Plot these estimates versus the true values for 500 and 1500 time steps. Turn in your graphs.

9) Modify R and Q to try and get good estimates of the coefficients, and turn in your graphs.
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