ECE-597: Probability, Random Processes, and Estimation
 Homework \# 6

Due: Tuesday April 26, 2016
Exam 2, Friday May 6
From the textbook: 8.24, 8.26 (a,b), 8.34, 8.35, 8.37, 8.42

Hints and Answers:
8.24, $K_{\mathbf{Y Y}}[n]=\sigma^{2}\left\{\left(1+|\alpha|^{2}\right) \rho^{|n|}-\alpha^{*} \rho^{|n+1|}-\alpha \rho^{|n-1|}\right\}, \alpha=\rho$ or $\alpha=1 / \rho$
8.26, $\mu_{\mathbf{y}}[n]=\frac{5}{1-\rho}, E\left[y[n]^{2}\right]=\frac{25}{(1-\rho)^{2}}+\frac{\sigma_{\omega}^{2}}{1-\rho^{2}}$
8.34, $h[m]=K_{\mathbf{X W}}[m], S_{\mathbf{X W}}(\omega)=H(\omega)$
$8.35, S_{\mathbf{X Y}}(\omega)=H^{*}(\omega) S_{\mathbf{X X}}(\omega)$
8.37, $S_{\mathbf{X W}}(\omega)=\frac{S_{\mathbf{X X}}(\omega)}{\sqrt{S_{\mathbf{Y Y}}(\omega)}}, h[n]=R_{\mathbf{X W}}[n]$ for $n=0,1, \ldots, N-1$
8.42, $\mu_{\mathbf{X}}[n]=\frac{n}{2}\left(s_{1}-s_{2}\right), R_{\mathbf{X} \mathbf{X}}\left[n_{1}, n_{2}\right]=\frac{\min \left(n_{1}, n_{2}\right)}{4}\left(s_{1}+s_{2}\right)^{2}+\frac{n_{1} n_{2}}{4}\left(s_{1}-s_{2}\right)^{2}$

Additional Problem

a) We can write $a^{|m|}$ as

$$
a^{|m|}=a^{m} u[m-1]+a^{-m} u[-m]
$$

Using this relationship derive the z - transform pair

$$
a^{|m|} \leftrightarrow \frac{1-a^{2}}{\left(1-a z^{-1}\right)(1-a z)}
$$

b) Assume we have an autoregressive model

$$
x[n]=a x[n-1]+v[n]
$$

with $|a|<1, v[n]$ zero mean white noise. Show that

$$
\begin{aligned}
S_{\mathbf{X X}}(z) & =\frac{\sigma_{v}^{2}}{\left(1-a z^{-1}\right)(1-a z)} \\
R_{\mathbf{X X}}[m] & =\frac{\sigma_{v}^{2} a^{|m|}}{1-a^{2}}
\end{aligned}
$$

c) Assume we have a moving average process

$$
x[n]=v[n]-b v[n-1]
$$

with $|b|<1$, and $v[n]$ zero mean white noise. Show that

$$
\begin{gathered}
S_{\mathbf{X X}}(z)=\sigma_{v}^{2}\left(1-b z^{-1}\right)(1-b z) \\
R_{\mathbf{X X}}[m]=\left(1+b^{2}\right) \sigma_{v}^{2} \delta[m]-b \sigma_{v}^{2} \delta[m+1]-b \sigma_{v}^{2} \delta[m-1]
\end{gathered}
$$

d) Assume we have a simple autoregressive moving average model

$$
x[n]=a x[n-1]-b v[n-1]+v[n]
$$

with $|a|<1,|b|<1$. Show that

$$
S_{\mathbf{X X}}(z)=\sigma_{v}^{2} \frac{\left(1-b z^{-1}\right)(1-b z)}{\left(1-a z^{-1}\right)(1-a z)}
$$

and find $R_{\mathbf{X X}}[m]$

