ECE-597: Probability, Random Processes, and Estimation
 Homework \# 4

Due: Friday April 15, 2016

1) Assume $\mathbf{X}_{1}, \mathbf{X}_{2}$, and \mathbf{Y} are jointly Gaussain with

$$
\underline{\mu}_{X}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], K_{\mathbf{X X}}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 10 & 4 \\
3 & 4 & 15
\end{array}\right], \underline{\mathbf{X}}=\left[\begin{array}{c}
\mathbf{X}_{1} \\
\mathbf{X}_{2} \\
\mathbf{Y}
\end{array}\right]
$$

a) Determine the optimal estimate of \mathbf{Y} based on observations of \mathbf{X}_{1} and \mathbf{X}_{2} using the orthogonality principle. To do this, you first need to create zero mean random variables,

$$
\underline{\mathbf{V}}_{\mathbf{x}}=\left[\begin{array}{l}
\mathbf{X}_{1}-\mu_{1} \\
\mathbf{X}_{2}-\mu_{2}
\end{array}\right] \quad \mathbf{V}_{\mathbf{Y}}=\mathbf{Y}-\mu_{3}
$$

Then $\hat{\mathbf{V}}_{\mathbf{Y}}=\underline{a}^{T} \underline{\mathbf{V}}_{\mathbf{X}}$. The orthogonality principle is then

$$
E\left[\left(\mathbf{V}_{\mathbf{Y}}-\hat{\mathbf{V}}_{\mathbf{Y}}\right) \underline{\mathbf{V}}_{\mathbf{X}}^{T}\right]=E\left[\left(\mathbf{V}_{\mathbf{Y}}-\underline{a}^{T} \underline{\mathbf{V}}_{\mathbf{X}}\right) \underline{\mathbf{V}}_{\mathbf{X}}^{T}\right]=0
$$

You can find the needed covariance matrices from $K_{\mathbf{X X}}$ above. Answer: $\hat{\mathbf{Y}}=3.67 \mathbf{X}_{1}-0.33 \mathbf{X}_{2}$.
2) The optimal linear estimator of \mathbf{X} given observation \mathbf{Y} was derived in class to be

$$
\hat{\mathbf{X}}(\mathbf{Y})=E[\mathbf{X}]+\frac{C O V(\mathbf{X}, \mathbf{Y})}{\sigma_{\mathbf{Y}}^{2}}(\mathbf{Y}-E[\mathbf{Y}])
$$

a) Derive the Mean Squared Error relationship for the optimal linear estimator of \mathbf{X} given Y

$$
E\left[(\mathbf{X}-\hat{\mathbf{X}})^{2}\right]=\sigma_{\mathbf{X}}^{2}-\operatorname{COV}(\mathbf{X}, \mathbf{Y})^{2} / \sigma_{\mathbf{Y}}^{2}
$$

b) Derive the normalized MSE relationship

$$
E\left[\left(\frac{\hat{\mathbf{X}}-\mathbf{X}}{\sigma_{\mathbf{X}}}\right)^{2}\right]=1-\rho_{\mathbf{X} \mathbf{Y}}^{2}
$$

3) Assume

$$
\mathbf{Y}=h \mathbf{X}+\mathbf{V}
$$

where \mathbf{X} is the random variable we want to estimate, \mathbf{Y} is the random variable we observe, \mathbf{V} is observation noise which is uncorrelated with \mathbf{X} and \mathbf{Y}. We have showed that the optimal linear estimator of \mathbf{X} given \mathbf{Y} is

$$
\hat{\mathbf{X}}(\mathbf{Y})=E[\mathbf{X}]+\frac{h \sigma_{\mathbf{X}}^{2}}{h^{2} \sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{V}}^{2}}(\mathbf{Y}-E[\mathbf{Y}])
$$

Now assume $E[\mathbf{X}] \neq 0, E[\mathbf{V}]=0$, and $E[\mathbf{X V}]=0$. We want to determine the optimal linear estimator using the orthogonality principle. For this we need zero mean variables. Let

$$
\begin{aligned}
\mathbf{W} & =\mathbf{Y}-\mu_{\mathbf{Y}} \\
\mathbf{U} & =\mathbf{X}-\mu_{\mathbf{X}}
\end{aligned}
$$

a) Use the orthogonality principle to determine the optimal c such that

$$
\hat{\mathbf{U}}(\mathbf{W})=c \mathbf{W}
$$

that is, we want

$$
E[(\mathbf{U}-\hat{\mathbf{U}}) \mathbf{W}]=0
$$

b) Show that your answer reduces to the form we derived previously, i.e. go back to \mathbf{X} and \mathbf{Y}.
4) Given the joint density

$$
f_{\mathbf{X}, \mathbf{Y}}(x, y)=x+y
$$

for $0 \leq x \leq 1,0 \leq y \leq 1, E[\mathbf{X}]=E[\mathbf{Y}]=0.583, \sigma_{\mathbf{X}}^{2}=\sigma_{\mathbf{Y}}^{2}=0.07639$, and $E[\mathbf{X Y}]=$ 0.333333
a) Determine the optimal linear estimator of \mathbf{X} given \mathbf{Y} is observed.
b) Determine the optimal estimator of \mathbf{X} given \mathbf{Y} is observed.
c) If $\mathbf{Y}=0$ and 1, what are the estimates of X using the two estimators?
5) Consider N observations $\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots \mathbf{R}_{N}$. Under both H_{1} and H_{0} the \mathbf{R}_{i} are independent and identically distributed zero mean Gaussian random variables. Under H_{1} each \mathbf{R}_{i} has variance σ_{1}^{2}, while under H_{0} each \mathbf{R}_{i} has variance σ_{0}^{2}. Show that for $\sigma_{1}^{2}>\sigma_{0}^{2}$ the likelihood ratio test becomes

$$
\sum_{i=1}^{i=N} r_{i}^{2} \stackrel{H_{1}}{\underset{H_{0}}{\gtrless}} \frac{2 \sigma_{0}^{2} \sigma_{1}^{2}}{\sigma_{1}^{2}-\sigma_{0}^{2}}\left(\ln \eta-N \ln \frac{\sigma_{0}}{\sigma_{1}}\right)
$$

6) Under hypothesis H_{0} random variable \mathbf{X} has the density $f_{\mathbf{X} \mid H_{0}}$, while under hypothesis H_{1} it has the density $f_{\mathbf{X} \mid H_{1}}$. The a priori probabilities and densities are shown below:

$$
\begin{array}{r}
f_{\mathbf{X} \mid H_{0}}=\frac{2}{\sqrt{2 \pi}} e^{-\frac{(x-1)^{2}}{2}} u(x) \\
f_{\mathbf{X} \mid H_{1}}=e^{-x} u(x) \\
\hline
\end{array}
$$

Assume costs $c_{01}=c_{10}=1$ and $c_{11}=c_{00}=0$. Using the likelihood ration test, determine the decision regions and construct a simple graph indicating which hypothesis will be accepted for all real observed values of random variable \mathbf{X}.
7) The Poisson distribution of events is encountered frequently as a model of shot noise and other diverse phenomenon. Each time the experiment is conducted a certain number of events occur. Our observation is just this number which ranges from 0 to ∞ and obeys a Posson distribution on both hypotheses; that is

$$
P(N=n)=\frac{\left(m_{i}\right)^{n}}{n!} e^{-m_{i}}, n=0,1,2, \ldots, i=0,1
$$

and m_{i} is that parameter that specifies the average number of events: $E(n)=m_{i}$. Show that the likelihood ratio test is

$$
n \stackrel{H_{1}}{\stackrel{H_{1}}{\gtrless}} \frac{\ln \eta+m_{1}-m_{0}}{\ln m_{1}-\ln m_{0}} \text { for } m_{1}>m_{0}
$$

and

$$
n \underset{H_{1}}{\stackrel{H_{0}}{\gtrless}} \frac{\ln \eta+m_{1}-m_{0}}{\ln m_{1}-\ln m_{0}} \text { for } m_{0}>m_{1}
$$

8) Assume we have Gaussian distributed two random vectors with means $\underline{\mu}_{0}$ and $\underline{\mu}_{1}$ and covariance matrices K_{0} and K_{1}.
a) Show that for the observed random vector $\underline{\mathbf{R}}$, the likelihood ratio test is

$$
\frac{1}{2}\left(\underline{r}-\underline{\mu}_{0}\right)^{T} K_{0}^{-1}\left(\underline{r}-\underline{\mu}_{0}\right)-\frac{1}{2}\left(\underline{r}-\underline{\mu}_{1}\right)^{T} K_{1}^{-1}\left(\underline{r}-\underline{\mu}_{1}\right) \stackrel{H_{1}}{\stackrel{H_{0}}{\gtrless}} \ln \eta+\frac{1}{2} \ln \left|K_{1}\right|-\frac{1}{2} \ln \left|K_{0}\right|
$$

Note that this decision is between two quadratic forms.
b) If $K_{1}=K_{2}=K$ (equal covariance matrices), show that the above result reduces to

$$
\left(\underline{\mu}_{1}-\underline{\mu}_{0}\right)^{T} K^{-1} r \stackrel{H_{1}}{\stackrel{H_{0}}{\gtrless}} \ln \eta+\frac{1}{2}\left(\underline{\mu}_{1}^{T} K^{-1} \underline{\mu}_{1}-\underline{\mu}_{0}^{T} K^{-1} \underline{\mu}_{0}\right)
$$

