ECE 597: Probability, Random Processes, and Estimation
 Homework \# 1

Due: Tuesday March 15, 2016
From the book: 4.10, 4.20, 4.50, 4.51, 4.74
Hints and Answers:
4.10, feel free to use Table 4.3.2. This is a very short problem.
4.20, feel free to use what you know about Gaussian random variables, this is a short problem.
4.50 , the answer is

$$
R_{n}(k)=\left\{\begin{array}{cc}
\left(1+a^{2}\right) \sigma^{2} & k=0 \\
-a \sigma^{2} & k= \pm 1 \\
0 & \text { else }
\end{array}\right.
$$

4.51, start with $R_{n}(0)$, then $R_{n}(1)$, etc. The answer is $R_{n}(l)=b^{|l|} K$
4.74, you should get $\operatorname{COV}(\epsilon, X)=\alpha \sigma_{x}^{2}-\sigma_{x} \sigma_{y} \rho_{x y}$ and if you put in the optimal values the covariance should be zero.

Additional Problems

In the problems that follow you might find it useful to remember

$$
\rho_{A B}=\frac{E\left[\left(\mathbf{A}-\mu_{a}\right)\left(\mathbf{B}-\mu_{b}\right)\right]}{\sigma_{a} \sigma_{b}}=\frac{\operatorname{COV}(\mathbf{A}, \mathbf{B})}{\sigma_{a} \sigma_{b}}
$$

1) Assume \mathbf{X} is a discrete random variable, with

$$
P(\mathbf{X}=-1)=\frac{1}{2}, P(\mathbf{X}=0)=\frac{1}{4}, P(\mathbf{X}=1)=\frac{1}{4}
$$

and the random variable \mathbf{Y} is defined in terms of the random variable \mathbf{X} as

$$
\mathbf{Y}=2 \cos (\pi \mathbf{X})
$$

a) Find the mean and variance of \mathbf{X}
b) Find the mean and variance of \mathbf{Y}

Answers: $-1 / 4,11 / 16,-1,3$
2) Assume \mathbf{X} is a discrete random variable, with

$$
P(\mathbf{X}=0)=\frac{1}{2}, P(\mathbf{X}=1)=\frac{1}{4}, P(\mathbf{X}=2)=\frac{1}{4}
$$

and the random variable \mathbf{Y} is defined in terms of the random variable \mathbf{X} as

$$
\mathbf{Y}=(\mathbf{X}-2)^{2}
$$

a) Find the mean and variance of \mathbf{X}
b) Find the mean and variance of \mathbf{Y}

Answers: 3/4, 11/16, 9/4, 51/16
3) For random variables \mathbf{X} and \mathbf{Y} we know $\mu_{x}=1, \mu_{y}=2, \sigma_{x}^{2}=4, \sigma_{y}^{2}=1$, and $\rho_{x y}=0.4$. Now we make up two new random variables

$$
\begin{aligned}
\mathbf{V} & =-\mathbf{X}+2 \mathbf{Y} \\
\mathbf{W} & =\mathbf{X}+3 \mathbf{Y}
\end{aligned}
$$

a) Show that $\mu_{v}=3$ and $\mu_{w}=7$
b) Show that $\sigma_{v}^{2}=4.8$ and $\sigma_{w}^{2}=17.8$.
c) Show that the covariance $\operatorname{COV}(\mathbf{W}, \mathbf{V})=1.2$
d) Show that $\rho_{w v}=0.13$
4) For random variables \mathbf{X} and \mathbf{Y} we know $\mu_{x}=0, \mu_{y}=0, \sigma_{x}^{2}=4, \sigma_{y}^{2}=16$, and $\rho_{x y}=-0.5$. Now we make up the random variable

$$
\mathbf{W}=(a \mathbf{X}+3 \mathbf{Y})^{2}
$$

a) Determine a symbolic expression for the value of a that minimizes μ_{w}.
b) Show that $\mu_{w}=108$.
5) Assume we have random variables $\mathbf{Y}=a \mathbf{X}+b$, where \mathbf{X} is normally distributed (Gaussian) with mean zero and variance one. Determine the parameters a and b so \mathbf{Y} will be normally distributed with a mean of μ and a variance of σ^{2}.
6) Recall that for a random variable Z with Gaussian pdf, we have

$$
F_{Z}(z)=\frac{1}{\sqrt{2 \pi \sigma_{z}^{2}}} e^{-\frac{1}{2 \sigma_{z}^{2}}\left(z-\mu_{z}\right)^{2}}
$$

and the mean of Z is μ_{z} and the variance of Z is σ_{z}^{2}.
Starting with the joint pdf for two Gaussian random variables X and Y (equation 4.3-27 in the text), and assuming that \mathbf{Y} is Gausian, show that

$$
\begin{aligned}
V A R[X \mid Y=y] & =\sigma_{x}^{2}\left(1-\rho_{x y}^{2}\right) \\
E[X \mid Y=y] & =\mu_{x}+\frac{\rho_{x y} \sigma_{x}}{\sigma_{y}}\left(y-\mu_{y}\right)
\end{aligned}
$$

Hint: Write the conditional pdf $f_{X \mid Y}(x \mid y)=A e^{-B}$ and solve for A and B, keeping in mind the general form for a Gaussian pdf. You do not need to do any integration, only algebra. We will use this result in the next computer project.

