Name:
ECE 597: Probability, Random Processes, and Estimation Exam \#2
Friday May 6, 2016
Calculators may only be used for simple calculations.

Possible Useful Equations

$$
\begin{aligned}
& y[n]=\sum_{k=-\infty}^{\infty} h[k] w[n-k] \\
& \sum_{m=-\infty}^{\infty} \gamma^{m} u[m] u[N-m]=\frac{1-\gamma^{N+1}}{1-\gamma} \\
& Z\left\{b^{|l|}\right\}=\frac{1-b^{2}}{\left(1-b z^{-1}\right)(1-b z)} \\
& Z\{x[n-k]\}=z^{-k} X(z) \\
& S_{\mathbf{X x}}(z)=K_{o} H_{c}(z) H_{c}\left(z^{-1}\right) \\
& H_{\text {Wiener }}(z)=\frac{1}{K_{o}} \frac{1}{H_{c}(z)}\left[\frac{S_{d x}(z)}{H_{c}\left(z^{-1}\right)}\right]_{+} \\
& \epsilon^{2}=R_{d d}[0]-\sum_{m=0}^{\infty} h[m] R_{d x}[m] \\
& \frac{H_{1}}{} \\
& \frac{f_{R \mid H_{1}}\left(r \mid H_{1}\right)}{f_{R \mid H_{0}}\left(r \mid H_{0}\right)} \frac{P_{0}\left(C_{10}-C_{00}\right)}{P_{1}\left(C_{01}-C_{11}\right)} \\
& H_{0}
\end{aligned}
$$

You may assume all random variables and sequences are real valued.
1)Assume $X[n]$ is an i.i.d random sequence taking on values 1 and 0 , with

$$
\begin{aligned}
& P\{\mathbf{X}[n]=1\}=\frac{1}{3} \\
& P\{\mathbf{X}[\mathbf{n}]=\mathbf{0}\}=\frac{2}{3}
\end{aligned}
$$

Define then a new random sequence $\mathbf{Z}[n]$, where

$$
\mathbf{Z}[n]=\sum_{k=1}^{k=n} \mathbf{X}[k]
$$

Determine $\mu_{\mathbf{X}}[n], \mu_{\mathbf{Z}}[n], R_{\mathbf{X X}}[n, m]$, and $R_{\mathbf{Z Z}}[n, m]$
2) Consider a signal $S[n]$ with additive white noise $\mathbf{V}[n]$, so the input to the system is

$$
\mathbf{X}[n]=S[n]+\mathbf{V}[n]
$$

Assume $\mathbf{V}[n]$ is a zero mean process which is uncorrelated with $S[n]$. The correlations $R_{S S}[n]$ and $R_{\mathbf{V V}}[n]$ are given as

$$
\begin{aligned}
R_{S S}[n] & =0.3^{|n|} \\
R_{\mathrm{VV}}[n] & =0.5 \delta[n]
\end{aligned}
$$

Determine the optimal linear (causal and stable) estimator for $S[n+1]$ using the Wiener filter. You can assume

$$
S_{\mathbf{X X}}(z)=\frac{1.440(1-0.1042 z)\left(1-0.1042 z^{-1}\right)}{(1-0.3 z)\left(1-0.3 z^{-1}\right)}
$$

3) Assume we have the zero mean WSS random sequence $\mathbf{X}[n]$. Assume we want to estimate $\mathbf{Y}[n]$ using the estimator

$$
\hat{Y}[n]=a \mathbf{X}[n]+b \mathbf{X}[n-1]
$$

Determine a matrix equation to be solved to determine a and b using the principle of orthogonality (the error is proportional to the data used to make the estimator). Your matrix equation will be in terms of $R_{\mathbf{X X}}$ and $R_{\mathbf{Y X}}$.
4) Consider a signal $S[n]$ with additive white noise $\mathbf{V}[n]$, so the input to the system is

$$
\mathbf{X}[n]=S[n]+\mathbf{V}[n]
$$

where

- $S[n]=a^{n} u[n]$ is a deterministic, not random signal
- $\mathbf{V}[n]$ is zero mean white noise with $R_{\mathbf{V V}}[n, m]=\sigma^{2} \delta[n-m]$
- the impulse response of the system is given by $h[n]=b^{n} u[n]$.

Determine the expected output power $E\left\{\mathbf{Y}^{2}[n]\right\}$

Hints:

- Assume you use the form $y[n]=\sum h[k] x[n-k]$
- You will need to be sure to use two sums with two dummy indices
- It is probably easier if you write $R_{\mathbf{X} \mathbf{X}}[n, m]$ instead of using a single argument

