Name:

Problem 1 __ $/ 10$
Problem $2 \ldots / 20$
Problem 3 __ $/ 10$
Problem 4 __ $/ 25$
Problem 5__ $/ 25$
Problem $6 \ldots / 10$

ECE 597: Probability, Random Processes, and Estimation Exam \#1

Thursday March 31, 2016

No calculators or computers allowed.

1) (10 points)) Assume we have a random variable X that takes on the values 1 and 0 with the probabilities

$$
\begin{aligned}
& P(\mathbf{X}=1)=\frac{2}{3} \\
& P(\mathbf{X}=0)=\frac{1}{3}
\end{aligned}
$$

We now construct the new random variable Y as

$$
\mathbf{Y}=2 \mathbf{X}+3
$$

Determine $\mu_{\mathbf{Y}}$ and $\sigma_{\mathbf{Y}}^{2}$
2) (20 points) Assume we have the joint density

$$
f_{\mathbf{X}, \mathbf{Y}}(x, y)=2 y e^{-x} \quad 0 \leq y \leq 1,0 \leq x<\infty
$$

Note: The ranges of X and Y are different
a) Determine the marginal density $f_{\mathbf{X}}(x)$
b) Determine the marginal density $f_{\mathbf{Y}}(y)$
c) Are X and Y independent? Why or why not?
d) Determine $E[\mathbf{Y} \mid \mathbf{X}]$
3) (10 points) Assume \underline{X} and \underline{W} are random vectors, not necessarily of the same size. Assume also that $K_{\mathrm{XX}}, K_{\mathrm{Ww}}$ and K_{Wx} are known. Now we make a new random vector

$$
\underline{\mathbf{Y}}=A \underline{\mathbf{X}}+B \underline{\mathbf{W}}+\underline{C}
$$

where A and B are constant matrices (not necessarily of the same size), and \underline{C} is a constant vector. Determine an expression for K_{YY} in terms of these known quantities ONLY. Do not assume the means are zero.

Hint: $(F G)^{T}=G^{T} F^{T}$

The two formulas may (or may not) be useful in the following problem.
The general formula for a multidimensional Gaussian density is

$$
f_{\underline{\mathbf{X}}}(\underline{x})=\frac{1}{(2 \pi)^{\frac{n}{2}}\left[\operatorname{det}\left(K_{\mathbf{X} \mathbf{X}}\right)^{\frac{1}{2}}\right]} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{\mu})^{T} K_{\mathbf{X} \mathbf{X}}^{-1}(\underline{x}-\underline{\mu})\right\}
$$

The inverse of a 2×2 matrix is given as

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

4) (25 points) Assume the random vector $\underline{X}=\left[X_{1} X_{2}\right]^{T}$ has the Gaussian density given by

$$
f_{\underline{\mathbf{X}}}(\underline{x})=\frac{1}{2 \pi \sqrt{1}} \exp \left\{-\frac{1}{2}\left[\left(x_{1}-1\right)^{2}-2\left(x_{1}-1\right) x_{2}+2 x_{2}^{2}\right]\right\}
$$

Determine $\underline{\mu}$ and $K_{\mathbf{X X}}$
5) (25 points) Assume \underline{X} is a zero mean random Gaussian vector with covariance

$$
K_{\mathbf{X X}}=\left[\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right]
$$

Assume we form the random vector Y using the transformation

$$
\mathbf{Y}=A \mathbf{X}
$$

where

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

a) Determine the resulting marginal pdf's, $f_{\mathbf{Y}_{\mathbf{1}}}\left(y_{1}\right)$ and $f_{\mathbf{Y}_{\mathbf{2}}}\left(y_{2}\right)$.
b) If the mean value of \mathbf{X} had been $\mu_{\mathbf{X}}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}$, determine the resulting mean value of Y
6) (10 points) Assume we have an experiment where the random variable X is assumed to follow a uniform density, i.e.,

$$
f_{\mathbf{X}}(x)=\frac{1}{\theta} \quad 0<x \leq \theta
$$

Assume we preform the experiment n times with outcomes $x_{1}, x_{2}, \ldots, x_{n}$, What is the maximum liklihood estimate of θ based on these observations?

Hint: Taking derivatives here will not help, you are going to have to think about this. You don't need to really do any math to come up with the answer.

