Name:

ECE 597: Probability, Random Processes, and Estimation Exam \#1

Thursday April 2, 2015

1) Assume we have the joint density

$$
f_{\mathbf{X}, \mathbf{Y}}(x, y)=\frac{1}{3}(x y+1) \quad 0 \leq x \leq 1,0 \leq y \leq 2
$$

Note: The ranges of \mathbf{X} and \mathbf{Y} are different
a) Determine the marginal density $f_{\mathbf{X}}(x)$
b) Determine the marginal density $f_{\mathbf{Y}}(y)$
c) Are \mathbf{X} and \mathbf{Y} independent? Why or why not?
d) Determine $E[\mathbf{X} \mid \mathbf{Y}]$ (note that this will be a function of y)
2) Assume we have an experiment where the random variable \mathbf{X} is assumed to follow an Erlang density, i.e.,

$$
f_{\mathbf{X}}(x)=\theta^{2} x e^{-\theta x} \quad 0<x<\infty
$$

Assume we preform the experiment n times with outcomes $x_{1}, x_{2}, \ldots, x_{n}$, What is the maximum liklihood estimate of $\hat{\theta}$ based on these observations?
3) Assume $\underline{\mathbf{X}}$ and $\underline{\mathbf{Y}}$ are random vectors, not necessarily of the same size. Assume also that $K_{\mathbf{X x}}, K_{\mathbf{W w}}$ and $K_{\mathbf{W x}}$ are known. Now we make a new random vector

$$
\underline{\mathbf{Y}}=A \underline{\mathbf{X}}+B \underline{\mathbf{W}}+\underline{C}
$$

where A and B are constant matrices (not necessarily of the same size), and \underline{C} is a constant vector. Determine an expression for $K_{\mathbf{Y Y}}$ in terms of these known quantities ONLY. Do not assume the means are zero.

Hint: $(F G)^{T}=G^{T} F^{T}$

The two formulas may (or may not) be useful in the following problem.
The general formula for a multidimensional Gaussian density is

$$
f_{\underline{\mathbf{X}}}(\underline{x})=\frac{1}{(2 \pi)^{\frac{n}{2}}\left[\operatorname{det}\left(K_{\mathbf{X} \mathbf{X}}\right)^{\frac{1}{2}}\right]} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{\mu})^{T} K_{\mathbf{X} \mathbf{X}}^{-1}(\underline{x}-\underline{\mu})\right\}
$$

The inverse of a 2×2 matrix is given as

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

4) Assume the random vector $\underline{\mathbf{X}}=\left[\mathbf{X}_{1} \mathbf{X}_{2}\right]^{T}$ has the Gaussian density given by

$$
f_{\underline{\mathbf{X}}}(\underline{x})=\frac{1}{\pi \sqrt{3}} \exp \left\{-\frac{1}{3}\left[2 x_{1}^{2}+2 x_{1}\left(x_{2}-1\right)+2\left(x_{2}-1\right)^{2}\right]\right\}
$$

Determine $\underline{\mu}$ and $K_{\mathbf{X x}}$
5) Assume $\underline{\mathbf{X}}$ is a zero mean random Gaussian vector with

$$
K_{\mathbf{X X}}=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]
$$

Determine a transformation matrix A and vector \underline{b} such that

$$
\underline{\mathbf{Y}}=A \underline{\mathbf{X}}+\underline{b}
$$

and

$$
K_{\mathbf{Y Y}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \underline{\mu}_{\mathbf{Y}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

