ECE-597: Probability, Random Processes, and Estimation
 Homework \# 8

Due: Friday May 15, 2015

Background Formulas

We begin with two general (and identical) relationships derived in class.

$$
\begin{align*}
\left.\hat{x}\right|_{k} & =\left.\hat{x}\right|_{k-1}+R_{x \epsilon_{k}} R_{\epsilon_{k} \epsilon_{k}}^{-1} \epsilon_{k} \tag{1}\\
\left.\hat{x}\right|_{k} & =\sum_{j=0}^{k} R_{x \epsilon_{j}} R_{\epsilon_{k} \epsilon_{j}}^{-1} \epsilon_{j} \tag{2}
\end{align*}
$$

where $\left.\hat{x}\right|_{k-1}$ is the linear least square estimate of x given observations $\left\{y_{0}, y_{1}, \ldots y_{k-1}\right\},\left.\hat{x}\right|_{k}$ is the linear least square estimate of x given observations $\left\{y_{0}, y_{1}, \ldots, y_{k}\right\}$, and $\epsilon_{k}=y_{k}-\hat{y}_{k \mid k-1}$ is a measure of new information or innovation in y_{k} that could not have been predicted by the previous observations $\left\{y_{0}, y_{1}, \ldots y_{k-1}\right\}$. By construction, $\left.\hat{x}\right|_{k}$ is orthogonal to $\left\{y_{0}, \ldots y_{k}\right\}$ and ϵ_{k} is orthogonal to $\left\{y_{0}, \ldots, y_{k-1}\right\}$.

Observations Linearly Related to the Unknown

Assume the observed sequence y_{k} is related to the x_{k} through

$$
y_{k}=H_{k} x_{k}+v_{k}
$$

where $E\left[v_{k} v_{l}^{T}\right]=R_{k} \delta_{k l}$ (white noise) and $E\left[x_{k} v_{l}^{T}\right]=0$ (noise uncorrelated with signal.) Now define

$$
\begin{aligned}
\epsilon_{k} & =y_{k}-\hat{y}_{k \mid k-1} \\
& =y_{k}-H_{k} \hat{x}_{k \mid k-1}
\end{aligned}
$$

where \hat{y}_{k} is the l.l.s.e. of y_{k} given the observations $\left\{y_{0}, \ldots, y_{k-1}\right\}$ and $\hat{x}_{k \mid k-1}$ is the l.l.s.e. of x_{k} given $\left\{y_{0}, \ldots, y_{k-1}\right\}$. Now define

$$
\tilde{x}_{k \mid k-1}=x_{k}-\hat{x}_{k \mid k-1}
$$

so that $\tilde{x}_{k \mid k-1}$ is the prediction error.
(1) Show that

$$
\epsilon_{k}=H_{k} \tilde{x}_{k \mid k-1}+v_{k}
$$

(2) Show that

$$
E\left[\epsilon_{k} \epsilon_{k}^{T}\right]=E\left[H_{k} \tilde{x}_{k \mid k-1} \tilde{x}_{k \mid k-1}^{T} H_{k}^{T}\right]+E\left[v_{k} \tilde{x}_{k \mid k-1}^{T} H_{k}^{T}\right]+E\left[H_{k} \tilde{x}_{k \mid k-1} v_{k}^{T}\right]+E\left[v_{k} v_{k}^{T}\right]
$$

(3) Defining

$$
P_{k \mid k-1}=E\left[\tilde{x}_{k \mid k-1} \tilde{x}_{k \mid k-1}^{T}\right]
$$

where $P_{k \mid k-1}$ is the error covariance matrix, show that the expression in part 2 reduces to

$$
E\left[\epsilon_{k} \epsilon_{k}^{T}\right]=H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k}
$$

We will define this as

$$
R_{k}^{\epsilon}=E\left[\epsilon_{k} \epsilon_{k}^{T}\right]
$$

(4) Substituting x_{k} for x in equation 1 yields

$$
\begin{aligned}
\hat{x}_{k \mid k} & =\hat{x}_{k \mid k-1}+R_{x_{k} \epsilon_{k}}\left(R_{k}^{\epsilon}\right)^{-1} \epsilon_{k} \\
& =\hat{x}_{k \mid k-1}+R_{x_{k} \epsilon_{k}}\left(R_{k}^{\epsilon}\right)^{-1}\left(y_{k}-H_{k} \hat{x}_{k \mid k-1}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
R_{x_{k} \epsilon_{k}} & =E\left[x_{k} \epsilon_{k}^{T}\right] \\
& =E\left[x_{k}\left(H_{k} \tilde{x}_{k \mid k-1}+v_{k}\right)^{T}\right] \\
& =E\left[x_{k} \tilde{x}_{k \mid k-1}^{T}\right] H_{k}^{T}
\end{aligned}
$$

Show that

$$
P_{k \mid k-1}=E\left[x_{k} \tilde{x}_{k \mid k-1}^{T}\right]
$$

and hence that

$$
R_{x_{k} \epsilon_{k}}=P_{k \mid k-1} H_{k}^{T}
$$

We will define this as

$$
K_{k}=R_{x_{k} \epsilon_{k}}
$$

So far we have

$$
\begin{aligned}
& \hat{x}_{k \mid k}=\hat{x}_{k \mid k-1}+K_{k}\left(R_{k}^{\epsilon}\right)^{-1}\left(y_{k}-H_{k} \hat{x}_{k \mid k-1}\right) \\
& \hat{x}_{k \mid k}=\hat{x}_{k \mid k-1}+K_{k}\left(R_{k}^{\epsilon}\right)^{-1} \epsilon_{k}
\end{aligned}
$$

where $\hat{x}_{k \mid k}$ is the l.l.s.e. of x_{k} based on observations $\left\{y_{0}, \ldots, y_{k}\right\}, \hat{x}_{k \mid k-1}$ is the l.l.s.e. of x_{k} given observations $\left\{y_{0}, \ldots, y_{k-1}\right\}, K_{k}\left(R_{k}^{\epsilon}\right)$ is the gain, and $\left(y_{k}-H_{k} \hat{x}_{k \mid k-1}\right)$ is the error between the prediction and the observation at time k. Now we will examine how the error covariance matrix, P_{k} evolves.
(5) Starting from the definition

$$
P_{k \mid k}=E\left[\tilde{x}_{k \mid k} \tilde{x}_{k \mid k}^{T}\right]
$$

show that

$$
\begin{aligned}
P_{k \mid k}= & E\left[x_{k}\left(x_{k}-\hat{x}_{k \mid k-1}\right)^{T}\right]-E\left[x_{k} \epsilon_{k}^{T}\right]\left(R_{k}^{\epsilon}\right)^{-1} K_{k}^{T} \\
& -E\left[\hat{x}_{k \mid k-1}\left(x_{k}-\hat{x}_{k \mid k-1}\right)^{T}\right]+E\left[\hat{x}_{k \mid k-1} \epsilon_{k}^{T}\right]\left(R_{k}^{\epsilon}\right)^{-1} K_{k}^{T} \\
& -K_{k}\left(R_{k}^{\epsilon}\right)^{-1} E\left[\epsilon_{k} x_{k}^{T}\right]+K_{k}\left(R_{k}^{\epsilon}\right)^{-1} E\left[\epsilon_{k} \hat{x}_{k \mid k-1}^{T}\right] \\
& +K_{k}\left(R_{k}^{\epsilon}\right)^{-1} E\left[\epsilon_{k} \epsilon_{k}^{T}\right]\left(R_{k}^{\epsilon}\right)^{-1} K_{k}^{T}
\end{aligned}
$$

and show that, by analyzing each term, this can be reduced to

$$
P_{k \mid k}=P_{k \mid k-1}-K_{k}\left(R_{k}^{\epsilon}\right)^{-1} K_{k}^{T}
$$

Hints: (1) use the result from part 1, (2) the results for the second, fifth, and seventh term are the same, (3) most of the remaining terms can be shown to be zero using orthogonality.

State Space Signal Models

Now we assume we know some dynamics:

$$
x_{k+1}=\Phi_{k} x_{k}+\Gamma_{k} w_{k}
$$

and the observation part remains the same:

$$
y_{k}=H_{k} x_{k}+v_{k}
$$

We assume here that $E\left[w_{k} v_{k}^{T}\right]=0, R_{w w}(k, l)=Q_{k} \delta_{k l}, E\left[w_{k} x_{0}^{T}\right]=0, E\left[w_{k}\right]=0, E\left[X_{0} X_{0}^{T}\right]=$ $\Pi_{0}, R_{v v}(k, l)=R_{k} \delta_{k l}, E\left[x_{k} v_{l}^{T}\right]=0$, and and $\Phi_{k}, \Gamma_{k}, Q_{k}, \Pi_{0}, R_{k}$, and H_{k} are known matrices.
(6) Argue that

$$
\hat{x}_{k+1 \mid k}=\Phi_{k} \hat{x}_{k \mid k}+\Gamma_{k} \hat{w}_{k \mid k}
$$

and, hence

$$
\hat{x}_{k+1 \mid k}=\Phi_{k} \hat{x}_{k \mid k}
$$

Specifically, why is $\hat{w}_{k \mid k} 0$? Hint: $\hat{w}_{k \mid k}$ is construncted from the observations $\left\{y_{0}, \ldots y_{k}\right\}$. Hence, since we have already shown that

$$
\hat{x}_{k \mid k}=\hat{x}_{k \mid k-1}+K_{k}\left(R_{k}^{\epsilon}\right)^{-1}\left\{y_{k}-H_{k} \hat{x}_{k \mid k-1}\right\}
$$

we have

$$
\hat{x}_{k+1 \mid k}=\Phi_{k} \hat{x}_{k \mid k-1}+\Phi_{k} K_{k}\left(R_{k}^{\epsilon}\right)^{-1}\left\{y_{k}-H_{k} \hat{x}_{k \mid k-1}\right\}
$$

where $x_{0 \mid-1}$ is defined to be zero.
(7) Now define

$$
\Sigma_{k+1 \mid k}=E\left[\hat{x}_{k+1 \mid k} \hat{x}_{k+1 \mid k}^{T}\right]
$$

Show that

$$
\Sigma_{k+1 \mid k}=\Phi_{k} \Sigma_{k \mid k-1} \Phi_{k}^{T}+\Phi_{k} K_{k}\left(R_{k}^{\epsilon}\right)^{-1} K_{k}^{T} \Phi_{k}^{T}
$$

where $\Sigma_{0 \mid-1}$ is defined to be zero. : Hints: (1) R_{k}^{ϵ} is symmetric, and (2) $\epsilon_{k}=y_{k}-H_{k} \hat{x}_{k \mid k-1}$ is the innovation, and is orthogonal to $\left\{y_{0}, \ldots, y_{k-1}\right\}$.
(8) Define

$$
\Pi_{k+1}=E\left[x_{k+1} x_{k+1}^{T}\right]
$$

and show that

$$
\Pi_{k+1}=\Phi_{k} \Pi_{k} \Phi_{k}^{T}+\Gamma_{k} Q_{k} \Gamma_{k}^{T}
$$

(9) Recall the error covariance matrix is given by

$$
P_{k+1 \mid k}=E\left[\tilde{x}_{k+1 \mid k} \tilde{x}_{k+1 \mid k}^{T}\right]
$$

show that

$$
\begin{aligned}
P_{k+1 \mid k} & =\Pi_{k+1}-\Sigma_{k+1 \mid k} \\
& =\Phi_{k}\left\{\Pi_{k}-\Sigma_{k \mid k-1}\right\} \Phi_{k}^{T}+\Gamma_{k} Q_{k} \Gamma_{k}^{T}-\Phi_{k} K_{k}\left(R_{k}^{\epsilon}\right)^{-1} K_{k}^{T} \Phi_{k}^{T}
\end{aligned}
$$

and, finally,

$$
P_{k+1 \mid k}=\Phi_{k} P_{k \mid k-1} \Phi_{k}^{T}+\Gamma_{k} Q_{k} \Gamma_{k}^{T}-\Phi_{k} K_{k}\left(R_{k}^{\epsilon}\right)^{-1} K_{k}^{T} \Phi_{k}^{T}
$$

Hints: (1) Use the identities
$E\left[\left(x_{k+1}-\hat{x}_{k+1 \mid k}\right)\left(x_{k+1}-\hat{x}_{k+1 \mid k}\right)^{T}\right]=E\left[x_{k+1} x_{k+1}^{T}\right]-E\left[\hat{x}_{k+1 \mid k}\left(x_{k+1}-\hat{x}_{k+1 \mid k}\right)^{T}\right]-E\left[x_{k+1} \hat{x}_{k+1 \mid k}^{T}\right]$
(2) Use orthogonality for the second term, and then use the trick

$$
E\left[x_{k+1} \hat{x}_{k+1 \mid k}^{T}\right]=E\left[\left(x_{k+1}-\hat{x}_{k+1 \mid k}+\hat{x}_{k+1 \mid k}\right) \hat{x}_{k+1 \mid k}^{T}\right]
$$

Summary of Equations

The recursive equations for the Kalman filter are:

$$
\hat{x}_{k+1 \mid k}=\Phi_{k} \hat{x}_{k \mid k-1}+\Phi_{k} K_{k}\left(R_{k}^{\epsilon}\right)^{-1}\left\{y_{k}-H_{k} \hat{x}_{k \mid k-1}\right\}
$$

where

$$
\begin{aligned}
\hat{x}_{0 \mid-1} & =0 \\
P_{0 \mid-1} & =\Pi_{0} \\
R_{k}^{\epsilon} & =H_{k} P_{k \mid k-1} H_{k}^{T}+R_{k} \\
K_{k} & =P_{k \mid k-1} H_{k}^{T} \\
P_{k+1 \mid k} & =\Phi_{k} P_{k \mid k-1} \Phi_{k}^{T}+\Gamma_{k} Q_{k} \Gamma_{k}^{T}-\Phi_{k} K_{k}\left(R_{k}^{\epsilon}\right)^{-1} K_{k}^{T} \Phi_{k}^{T}
\end{aligned}
$$

There are, of course, alternative forms of the filter and alternative derivations.
(10) Using the Kalman filter equations, show that

$$
\hat{x}_{1 \mid 0}=\Phi_{0} \Pi_{0} H_{0}^{T}\left(H_{0} \Pi_{0} H_{0}^{T}+R_{0}\right)^{-1} y_{0}
$$

(11) Using the orthogonality condition determine the least squares estimator

$$
\hat{x}_{1 \mid 0}=\alpha y_{0}
$$

directly, i.e. determine the optimal α.

Computer Assignment

This part of the assignment can be done independently of the derivation. You mostly just play around with code. In all of your computer runs, look at 500 and 1500 time steps. You can get the code from the class website.
(1) We will now use the Kalman filter as an to estimate the parameters of a simple autoregressive model with fixed coefficients (i.e., a_{1} and a_{2} are fixed). Specifically, assume

$$
y_{k}=-a_{1} y_{k-1}+-a_{2} y_{k-2}+v_{k}
$$

were v_{k} is a white noise sequence with variance R.
Here x_{k} is our estimate of the coefficient for the AR process, $H_{k}=\left[\begin{array}{ll}y_{k-1} & y_{k-2}\end{array}\right]$, and Q is noise in the model. We will then set Φ and Γ equal to the identity matrix. Note that with this formulation, we are assuming the estimates do not change from one time instant to the next, which is a good assumption for constant coefficients, but not so good if they are time varying.
2) For the problem stated in (1), simulate the AR process with $a_{1}=0.7, a_{2}=0.12$, and $R=0.05$ and $Q_{k}=0.05$ (assume Q is diagonal), and determine the estimate of the coefficients as a function of time. Plot these estimates versus the true values for 500 and 1500 time steps. Turn in your graphs.
3) Modify Q (leave R at 0.05) to try and get a good estimate of the coefficients. Run your simulations for 500 and 1500 time steps, and turn in your graphs.
4) Now we will assume our parameters are changing as a function of time. Specifically, assume

$$
\begin{aligned}
& a_{1}(k)=0.4+0.5 \cos (3 \pi k / 200) \\
& a_{2}(k)=0.5+0.3 \sin (2 \pi k / 200)
\end{aligned}
$$

5) For the problem stated in (4), simulate the AR process using and $R=0.05$ and $Q_{k}=0.05$ (assume Q is diagonal), and determine the estimate of the coefficients as a function of time. Plot these estimates versus the true values for 500 and 1500 time steps. Turn in your graphs.
6) Modify R and Q to try and get a good estimates of the coefficients, and turn in your graphs.
7) Now we will again assume our parameters are changing as a function of time. Specifically, assume

$$
\begin{aligned}
& a_{1}(k)=0.4+0.5 \cos (3 \pi k / 200) \\
& a_{2}(k)=1.5+0.3 \sin (2 \pi k / 200)
\end{aligned}
$$

8) For the problem stated in (7), simulate the AR process using and $R=0.05$ and $Q_{k}=0.05$ (assume Q is diagonal), and determine the estimate of the coefficients as a function of time.

Plot these estimates versus the true values for 500 and 1500 time steps. Turn in your graphs.
9) Modify R and Q to try and get good estimates of the coefficients, and turn in your graphs.

