ECE-597: Probability, Random Processes, and Estimation
 Homework \# 2

Due: Friday March 27, 2015
From the book: 5.19, 5.21, 5.24, 5.29, 5.30
Hints and Answers:
5.19 , should be easy
5.21, expand out, look at cross terms, and use the uncorrelated property
5.24 , there are many possible answers, you should check your C using Matlab
5.29, should be easy, remember $\underline{a}^{T} \underline{x}=\underline{x}^{T} \underline{a}$ if $\underline{a}^{T} \underline{x}$ is a scalar
5.30, use a whitening transform, even if the problem does not say to. Also try the second additional problem below before trying this problem.

Additional Problems

1) Assume

$$
\mathbf{Y}=h \mathbf{X}+\mathbf{V}
$$

where \mathbf{X} is a random variable with mean μ_{x} and standard deviation $\sigma_{x}^{2}, \mathbf{V}$ is observation noise which is uncorrelated with \mathbf{X} and has mean $\mu_{v}=0$ and variance σ_{v}^{2}. We want to estimate \mathbf{X} from observing \mathbf{Y}. We showed in class that the optimal linear estimator is of the form

$$
\hat{\mathbf{X}}=\mu_{x}+\frac{\operatorname{Cov}(\mathbf{X}, \mathbf{Y})}{\sigma_{y}^{2}}\left(\mathbf{Y}-\mu_{y}\right)
$$

Show that the optimal linear estimator for this problem is given by

$$
\hat{\mathbf{X}}(\mathbf{Y})=\mu_{x}+\frac{h \sigma_{x}^{2}}{h^{2} \sigma_{x}^{2}+\sigma_{v}^{2}}\left(\mathbf{Y}-h \mu_{x}\right)
$$

What happens if σ_{v} is zero? What happens if h is zero?
2) Consider Gaussian random vector \mathbf{X} with zero mean and covariance matrix

$$
K_{X X}=\left[\begin{array}{cc}
2 & \sqrt{2} \\
\sqrt{2} & 3
\end{array}\right]
$$

a) Determine an expression for $f_{\underline{X}}(\underline{x})$ using equation 5.6-2.
b) Assume we define $\mathbf{Y}=A \mathbf{X}$ where

$$
A=\left[\begin{array}{cc}
-2 & \sqrt{2} \\
1 & \sqrt{2}
\end{array}\right]
$$

Determine $K_{Y Y}$, put this into equation 5.6-2 and determine $f_{Y_{1}}\left(y_{1}\right)$ and $f_{Y_{2}}\left(y_{2}\right)$

