ECE 597: Probability, Random Processes, and Estimation
 Homework \# 1

Due: Friday March 20, 2015
From the book: 2.17, 2.18, 4.10, 4.20, 4.50, 4.51, 4.74
Hints and Answers:
2.17, (partial answer) $\mathrm{P}[$ burns ≥ 2 months $]=0.44$.
2.18, think in terms of the intersection of events.
4.10, feel free to use Table 4.3.2. This is a very short problem.
4.20, feel free to use what you know about Gaussian random variabls, this is a short problem.
4.50 , the answer is

$$
R_{n}(k)=\left\{\begin{array}{cc}
\left(1+a^{2}\right) \sigma^{2} & k=0 \\
-a \sigma^{2} & k= \pm 1 \\
0 & \text { else }
\end{array}\right.
$$

4.51, start with $R_{n}(0)$, then $R_{n}(1)$, etc. The answer is $R_{n}(l)=b^{|l|} K$
4.74, you should get $\operatorname{COV}(\epsilon, X)=\alpha \sigma_{x}^{2}-\sigma_{x} \sigma_{y} \rho_{x y}$ and if you put in the optimal values the covariance should be zero.

Additional Problems

1) Assume we have random variables $\mathbf{Y}=a \mathbf{X}+b$, where \mathbf{X} is normally distributed (Gaussian) with mean zero and variance one. Determine the parameters a and b so \mathbf{Y} will be normally distributed with a mean of μ and a variance of σ^{2}.
2) Recall that for a random variable Z with Gaussian pdf, we have

$$
F_{Z}(z)=\frac{1}{\sqrt{2 \pi \sigma_{z}^{2}}} e^{-\frac{1}{2 \sigma_{z}^{2}}\left(z-\mu_{z}\right)^{2}}
$$

and the mean of Z is μ_{z} and the variance of Z is σ_{z}^{2}.
Starting with the joint pdf for two Gaussian random variables X and Y (equation 4.3-27 in the text), show that

$$
\begin{aligned}
V A R[X \mid Y=y] & =\sigma_{x}^{2}\left(1-\rho_{x y}^{2}\right) \\
E[X \mid Y=y] & =\mu_{x}+\frac{\rho_{x y} \sigma_{x}}{\sigma_{y}}\left(y-\mu_{y}\right)
\end{aligned}
$$

Hint: Write the conditional pdf $f_{X \mid Y}(x \mid y)=A e^{-B}$ and solve for A and B, keeping in mind the general form for a Gaussian pdf. You do not need to do any integration, only algebra. We will use this result in the next computer project.

