## ECE-597: Optimal Control Homework \#8

1) From the text, 5.2.1.
2) From the text, 5.2.3. Don't follow the solution. Use the equation

$$
\dot{P}=A P+P A^{T}-B R^{-1} B^{T}
$$

and then the equations

$$
\begin{aligned}
\dot{M} & =-M A \\
\frac{d}{d t}[\mathcal{Q}(t)]^{-1} & ==-M B R^{-1} B^{T} M^{T}
\end{aligned}
$$

to find $K(t)$ in terms of $T=t_{f}-t$. This is "all" you have to do for this problem.
3) Consider the tracking problem

$$
\begin{aligned}
\operatorname{minimize} J= & \frac{1}{2}(y(T)-r(T))^{T} P(y(T)-r(T))+\frac{1}{2} \int_{t_{0}}^{T}\left[(y-r)^{T} Q(y-r)+u^{T} R u\right] d t \\
\text { subject to } \quad & \dot{x}=A x+B u \\
& y(t)=C x(t) \\
& P \geq 0, Q \geq 0, R>0, P=P^{T}, Q=Q^{T}, R=R^{T}
\end{aligned}
$$

Here $r(t)$ is a reference signal we would like to track. Show that the solution to this problem can be written as:

$$
\begin{aligned}
\dot{S} & =-S A-A^{T} S+S B R^{-1} B^{T} S-C^{T} Q C, \quad S(T)=C^{T} P C \\
\dot{g} & =-(A-B K)^{T} g+C^{T} Q r, \quad g(T)=-C^{T} \operatorname{Pr}(T) \\
K(t) & =R^{-1} B^{T} S \\
u(t) & =-K x-R^{-1} B^{T} g
\end{aligned}
$$

