
ECE-597: Optimal Control Homework #5

Due: Wednesday April 26, 2006

Continuous-Time Problems with Hard Terminal Constraints using fopc.m

We will be utilizing the routine fopc.m to solve continuous-time optimization problems of
the form:

Find the input u(t), t0 ≤ t ≤ tf to minimize

J = φ[x(tf)] +
∫ tf

t0
L[x(t), u(t), t]dt

subject to the constraints

ẋ(t) = f [x(t), u(t), t]

ψ[x(tf)] = 0

x(0) = x0 (known)

Note that we are now adding hard terminal constraint, i.e., we can force x(tf) to end at
certain values.

In the Mayer formulation, the state vector is augmented by one state q(t) that is the integral
of L from t0 to t:

q(t) =
∫ t

t0
L[x(t), u(t), t]dt

The Bolza performance index

J = φ[x(tf)] +
∫ tf

t0
L [x(t), u(t), t] dt

becomes the Mayer performance index

J = φ[x(tf)] + q(tf) = φ̄[x̄(tf)]

where

x̄ =

[
x
q

]

and ψ[x(tf)] is another constraint (like ẋ(t) = f(x(t), u(t), t)). We usually drop the bar on
x and φ and the problem is stated as finding a sequence u(t), t0 ≤ t ≤ tf to minimize (or
maximize)

J = φ[x(tf)]

1

subject to

ẋ(t) = f [x(t), u(t), t]

ψ[x(tf)] = 0

and t0, x(t0) and tf are specified.

In order to use the routine fopc.m, you need to write a routine that returns one of three
things depending on the value of the variable flg. The general form of your routine will be
as follows:

function [f1,f2] = bobs_fopc(u,s,t,flg)

Here u is the current input, u(t), and s (s(t))contains the current state (including the
augmented state), so ṡ(t) = f(s(t), u(t), t). Your routine should compute the following:

if flg = 1 f1 = ṡ(t) = f(s(t), u(t), t)

if flg = 2 f1 =

[
φ[s(tf)]
ψ[s(tf)]

]
, f2 =

[
φs(tf)[s(tf)]
ψs(tf)[s(tf)]

]

if flg = 3 f1 = fs, f2 = fu

An example of the usage is:

[tu,ts,nu,la0] = fopc(’bobs_fopc’,tu,tf,s0,k,told,tols,mxit,eta)

The (input) arguments to fopc.m are the following:

• the function you just created (in single quotes).

• tu is an initial guess of times (first column), and control values (subsequent columns)
that minimizes J . If there are multiple control signals at a given time, they are all in
the same row. Note that these are just the initial time and control values, the times
and control values will be modified as the program runs. The initial time should start
at zero.

• the initial states, s0. Note that you must include and initial guess for the “cumulative”
state q also.

• the final time, tf .

• k, the step size parameter, k > 0 to minimize. Often you need to play around with
this one.

• told, the tolerance (a stopping parameter) for ode23 (differential equation solver for
Matlab)

• tols, the tolerance (a stopping parameter), when |∆u| < tols between iterations, the
programs stops.

2

• mxit, the maximum number of iterations to try.

• eta, where 0 < eta ≤ 1, and d(psi) = -eta*psi is the desired change in the terminal
constraints on the next iteration.

fopc.m returns the following:

• tu the optimal input sequence and corresponding times. The first column is the time,
the corresponding columns are the control signals. All entries in one row correspond
to one time.

• ts the states and corresponding times. The first column is the time, the corresponding
columns are the states. All entries in one row correspond to the same time. Note that
the times in tu and the times in ts may not be the same, and they may not be evenly
spaced.

• nu, the Lagrange multipliers on psi

• la0 the Lagrange multipliers

It is usually best to start with a small number of iterations, like 5, and see what happens
as you change k. Start with small values of k and gradually increase them. It can be very
difficult to make this program converge, especially if your initial guess is far away from the
true solution.

Note!! If you are using the fopc.m file, and you use the maximum number of allowed
iterations, assume that the solution has NOT converged. You must usually change the value
of k and/or increase the number of allowed iterations. Do not set tol to less than about 5e-5.
Also try to make k as large as possible and still have convergence.

Example A Assume the continuous-time equations of motion

u̇(t) = a cos(θ(t))

v̇(t) = a sin(θ(t))

ẏ(t) = v(t)

ẋ(t) = u(t)

We want to find θ(t) to maximize u(tf) and we want v(tf) = 0, and y(tf) = yf , where a = 1,
yf = 0.2, and tf = 1.0.

Let’s define the state vector as

s =

u
v
y
x

3

and let’s define

Φ[s(tf)] =

[
φ[s(tf)]
ψ[s(tf)]

]

For this problem we want to maximize u(tf), so we have

φ[s(tf)] = u(tf), L = 0

Hence q(t) = 0 for all t and we do not need to augment the state.

We also have the hard terminal constraints

ψ[s(tf)] =

[
v(tf)

y(tf)− yf

]

so we can write

Φ[s(tf)] =

u(tf)
v(tf)

y(tf)− yf

We can then write

f =

f1

f2

f3

f4

 =

a cos(θ(t))
a sin(θ(t))

v(t)
u(t)

Next we need

Φs(tf)[s(tf)] =

[
φs(tf)[s(tf)]
ψs(tf)[s(tf)]

]

=

∂φ[s(tf)]

∂u(tf)

∂φ[s(tf)]

∂v(tf)

∂φ[s(tf)]

∂y(tf)

∂φ[s(tf)]

∂x(tf)
∂ψ[s(tf)]

∂u(tf)

∂ψ[s(tf)]

∂v(tf)

∂ψ[s(tf)]

∂y(tf)

∂ψ[s(tf)]

∂x(tf)

=

1 0 0 0
0 1 0 0
0 0 1 0

Then we need

fs =
[

∂f
∂u(t)

∂f
∂v(t)

∂f
∂y(t)

∂f
∂x(t)

]
=

∂f1

∂u(t)
∂f1

∂v(t)
∂f1

∂y(t)
∂f1

∂x(t)
∂f2

∂u(t)
∂f2

∂v(t)
∂f2

∂y(t)
∂f2

∂x(t)
∂f3

∂u(t)
∂f3

∂v(t)
∂f3

∂y(t)
∂f3

∂x(t)
∂f4

∂u(t)
∂f4

∂v(t)
∂f4

∂y(t)
∂f4

∂x(t)

=

0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0

4

and finally

fu = fθ =

∂f1

∂θ(t)
∂f2

∂θ(t)
∂f3

∂θ(t)
∂f4

∂θ(t)

=

−a sin(θ(t))
a cos(θ(t))

0
0

This is implemented in the routine bobs fopc a.m on the class web site, and it is run using
the driver file fopc example a.m.

Discrete-Time Problems with Hard Terminal Constraints using dopc.m

We will be utilizing the routine dopc.m to solve discrete-time optimization problems of the
form:

Find the input sequence u(i), i = 0, .., N − 1 to minimize

J = φ[x(N)] +
N−1∑

i=0

L[x(i), u(i), i]

subject to the constraints

x(i + 1) = f [x(i), u(i), i]

ψ[x(N)] = 0

x(0) = x0 (known)

Note that we are now adding hard terminal constraint, i.e., we can force x(N) to end at
certain values.

In the Mayer formulation, the state vector is augmented by one state q(i) that is the cumu-
lative sum of L up to step i:

q(i + 1) = q(i) + L[x(i), u(i), i]

The Bolza performance index

J = φ[x(N)] +
N−1∑

i=1

L [x(i), u(i), i]

becomes the Mayer performance index

J = φ[x(N)] + q(N) = φ̄[x̄(N)]

5

where

x̄ =

[
x
q

]

and ψ[x(N)] is another constraint (like x(i + 1) = f(x(i), u(i), i)). We usually drop the bar
on x and φ and the problem is stated as finding a sequence u(i), i = 0, ..., N −1 to minimize
(or maximize)

J = φ[x(N)]

subject to

x(i + 1) = f [x(i), u(i), i]

ψ[x(N)] = 0

and x(0) and N are specified.

In order to use the routine dopc.m, you need to write a routine that returns one of three
things depending on the value of the variable flg. The general form of your routine will be
as follows:

function [f1,f2] = bobs_dopc(u,s,dt,t,flg)

Here u is the current input, u(i), and s (s(i))contains the current state (including the aug-
mented state) so s(i + 1) = f(s(i), u(i), ∆T). dt is the time increment ∆T , and t is the
current time. You can compute the current index i using the relationship i = t

∆T
+ 1. Your

routine should compute the following:

if flg = 1 f1 = s(i + 1) = f(s(i), u(i), ∆T)

if flg = 2 f1 =

[
φ[s(N)]
ψ[s(N)]

]
, f2 =

[
φs(N)[s(N)]
ψs(N)[s(N)]

]

if flg = 3 f1 = fs, f2 = fu

An example of the usage is:

[u,s,nu,la0] = dopc(’bobs_dopc’,u,s0,tf,k,tol,mxit,eta)

The (input) arguments to dop0.m are the following:

• the function you just created (in single quotes).

• the initial guess for the value of u that minimizes J . This initial size is used to
determine the time step: if there are n components in u, then ∆T =

tf
n

• an initial guess of the states, s0. Note that you must include and initial guess for the
“cumulative” state q also.

• the final time, tf .

6

• k, the step size parameter, k > 0 to minimize. Often you need to play around with
this one.

• tol, the tolerance (a stopping parameter), when |∆u| < tol between iterations, the
programs stops.

• mxit, the maximum number of iterations to try.

• eta, where 0 < eta ≤ 1, and d(psi) = -eta*psi is the desired change in the terminal
constraints on the next iteration.

dopc.m returns the following:

• u the optimal input sequence

• s the corresponding states

• nu, the Lagrange multipliers on psi

• la0 the Lagrange multipliers

It is usually best to start with a small number of iterations, like 5, and see what happens
as you change k. Start with small values of k and gradually increase them. It can be very
difficult to make this program converge, especially if your initial guess is far away from the
true solution.

Note!! If you are using the dopc.m file, and you use the maximum number of allowed
iterations, assume that the solution has NOT converged. You must usually change the value
of k and/or increase the number of allowed iterations. Do not set tol to less than about 5e-5.
Also try to make k as large as possible and still have convergence.

Example B Assume the discrete-time equations of motion (these are the discretized equa-
tions from Example A)

u(i + 1) = u(i) + a∆T cos(θ(i))

v(i + 1) = v(i) + a∆T sin(θ(i))

y(i + 1) = y(i) + ∆Tv(i) +
a

2
∆T 2 sin(θ(i))

x(i + 1) = x(i) + ∆Tu(i) +
a

2
∆T 2 cos(θ(i))

We want to find θ(i) to maximize u(N) and we want v(N) = 0 and y(N) = yf , where a = 1,
yf = 0.2, tf = 1.0, and ∆T = tf/N .

Let’s define the state vector as

s =

u
v
y
x

7

and let’s define

Φ[s(N)] =

[
φ[s(N)]
ψ[s(N)]

]

For this problem we want to maximize u(N), so we have

φ[s(N)] = x(N), L = 0

Hence q(i) = 0 for all i and we do not need to augment the state.

We also have the hard terminal constraints

ψ[s(N)] =

[
v(N)

y(N)− yf

]

so we can write

Φ[s(N)] =

u(N)
v(N)

y(N)− yf

We can then write

f =

f1

f2

f3

f4

 =

u(i) + a∆T cos(θ(i))
v(i) + ∆Ta sin(θ(i))

y(i) + ∆Tv(i) + 1
2
∆T 2a sin(θ(i))

x(i) + ∆Tu(i) + 1
2
∆T 2a cos(θ(i))

Next we need

Φs(N)[s(N)] =

[
φs(N)[s(N)]
ψs(N)[s(N)]

]

=

∂φ[s(N)]
∂u(N)

∂φ[s(N)]
∂v(N)

∂φ[s(N)]
∂y(N)

∂φ[s(N)]
∂x(N)

∂ψ[s(N)]
∂u(N)

∂ψ[s(N)]
∂v(N)

∂ψ[s(N)]
∂y(N)

∂ψ[s(N)]
∂x(N)

=

1 0 0 0
0 1 0 0
0 1 0 0

Then we need

fs =
[

∂f
∂u(i)

∂f
∂v(i)

∂f
∂y(i)

∂f
∂x(i)

]
=

∂f1

∂u(i)
∂f1

∂v(i)
∂f1

∂y(i)
∂f1

∂x(i)
∂f2

∂u(i)
∂f2

∂v(i)
∂f2

∂y(i)
∂f2

∂x(i)
∂f3

∂u(i)
∂f3

∂v(i)
∂f3

∂y(i)
∂f3

∂x(i)
∂f4

∂u(i)
∂f4

∂v(i)
∂f4

∂y(i)
∂f4

∂x(i)

=

1 0 0 0
0 1 0 0
0 ∆T 1 0

∆T 0 0 1

8

and finally

fu = fθ =

∂f1

∂θ(i)
∂f2

∂θ(i)
∂f3

∂θ(i)
∂f4

∂θ(i)

=

−a∆T sin(θ(i))
a∆T cos(θ(i))
a
2
∆T 2 cos(θ(i))

−a
2
∆T 2 sin(θ(i))

This is implemented in the routine bobs dopc b.m on the class web site, and it is run using
the driver file dopc example b.m.

9

1) We will solve the same problem here in both continuous-time and discrete-time form.
a) Assume the continuous time equations of motion

u̇(t) = a cos(θ(t))

v̇(t) = a sin(θ(t))− g

ẏ(t) = v(t)

ẋ(t) = u(t)

We want to find θ(t) to maximize u(tf) and we want v(tf) = 0, y(tf) = yf , x(tf) = xf and
v(tf) = 0, where a = 1, g = 1/3, yf = 0.2, xf = 0.15 and tf = 1.0. Solve the problem using
fopc.m and include your code and final plot.

b) Assume the discrete-time equations of motion

u(i + 1) = u(i) + a∆T cos(θ(i))

v(i + 1) = v(i) + ∆T [a sin(θ(i))− g]

y(i + 1) = y(i) + ∆Tv(i) +
1

2
∆T 2 [a sin(θ(i))− g]

x(i + 1) = x(i) + ∆Tu(i) +
1

2
∆T 2a cos(θ(i))

We want to find θ(i) to maximize u(N) and we want v(N) = 0, y(N) = yf , x(N) = xf and
v(N) = 0, where a = 1, g = 1/3, yf = 0.2, xf = 0.15, tf = 1.0, and ∆T = tf/N . Solve the
problem using dopc.m and include your code and final plot.

2) We will solve the same problem here in both continuous-time and discrete-time form.
a) Assume the continuous time equations of motion

v̇(t) = a− g sin(γ(t))

ẏ(t) = v(t) sin(γ(t))

ẋ(t) = v(t) cos(γ(t))

We want to find γ(t) to maximize x(tf) and we want y(tf) = yf , where a = 0.5, g = 1,
yf = 0.1, and tf = 1.0. Solve the problem using fopc.m and include your code and final
plot.

b) Assume the discrete-time equations of motion

v(i + 1) = v(i) + ∆T [ã− sin(γ(i))]

y(i + 1) = y(i) + ∆l(i) sin(γ(i))

x(i + 1) = x(i) + ∆l(i) cos(γ(i))

∆l(i) = v(i)∆T +
1

2
[ã− sin(γ(i))] ∆T 2

We want to find θ(i) to maximize x(N) and we want y(N) = yf , where ã = 0.5, yf = 0.1,
tf = 1.0, and ∆T = tf/N . Solve the problem using dopc.m and include your code and final

10

plot.

3) Assume we have a model for heating a room

θ̇(t) = −a(θ(t)− θa) + bu(t)

where θ(t) is the room temperature at time t, θa is the ambient room temperature, a and b
are constants, and u(t) is the rate of heat supplied to the room. Defining the state variable

x(t) = θ(t)− θa

we have the state equations

ẋ(t) = −ax(t) + bu(t)

Suppose we want to heat the room to a desired final temperature using the minimum energy.
We would have

J =
1

2

∫ T

0
u2(t)dt

subject to

ẋ(t) = −ax(t) + bu(t)

x(0) = θ(0)− θa

xf = θf − θa

where T is the given final time.

a) Show that

λx(t) = νe−a(T−t)

b) Show that

u(t) = −bλx(t)

and that

d

dt

(
x(t)eat

)
= −b2λx(t)e

at

c) Defining

γ = −b2νe−aT

show that

x(t) = x(0)e−at +
γ

a
sinh(at)

11

d) Equating x(T) with xf , show that we get

ν =
2a

b2(1− e−2aT)

[
x0e

−aT − xf

]

e) Using the Matlab function fopc.m to simulate this system for the case a = 10, b =
2, x0 = 10, T = 2, xf = 20 Try small values of k (near 10−6), set both tolerances to about
5 × 10−3, and a maximum of 25 simulations. Compare the true and estimated inputs and
states.

f) As the results show, this may not be a very good way to try and heat up a room. Devise
a different performance index that still penalizes the energy, but does not produce the rapid
drop in temperature we got in part (e). Rerun your simulation for this performance index.
(You do not need an analytical solution!) Try to be creative and don’t just copy something
from a friend.

4) From the text, 3.1.2. Don’t worry about part (b). Note: the final answer in (a) is correct,
but I think there is an error in the solution.

5) From the text, 3.3.7 (a and b only) Follow the steps in the solutions.

12

