ECE-597: Optimal Control

Homework \#9
Due: Last day of class, 2007
In this problem you will write a Matlab routine that computes the steady state value of S and the feedback gain K for a Linear Quadratic Regulator which minimizes the performance index

$$
J=\frac{1}{2} \int_{0}^{\infty}\left[y(t)^{T} Q y(t)+u(t)^{T} R u(t)\right] d t
$$

subject to the linear, time-invariant state model

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)
\end{aligned}
$$

Specifically, you are to write a Matlab function that

- has input arguments A, B, C, Q, and R
- uses Matlab's built in command lqry to compute the steady state LQR values of S and state feedback gain K. These values should be written to the screen (the command ss may be useful here)
- determines the eigenvalues and corresponding eigenvalues of the matrix

$$
\left[\begin{array}{cc}
A & -B R^{-1} B^{T} \\
-C^{T} Q C & -A^{T}
\end{array}\right]
$$

(the command eig may be usefull here)

- locates all the negative eigenvalues and the corresponding eigenvectors and puts them into the array

$$
\left[\begin{array}{l}
X_{-} \\
\Lambda_{-}
\end{array}\right]
$$

- determines the steady state value of S and K from the previously derived matrix and writes them to the screen (the command length or size may be useful)

Note that your code should work for any state variable model I choose to use! You need to e-mail me your code when you are done.

