ECE-597: Optimal Control
Homework \#8
Due: Last day of class, 2007

1. From Bryson Another common form of the quadratic performance index, which we have already seen, is

$$
J=\frac{1}{2} e_{f}^{T} Q_{f} e_{f}+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left\{y(t)^{T} Q_{y} y(t)+u(t)^{T} R_{y} u(t)\right\} d t
$$

where $y(t)=C x(t)+D u(t)$. Show that

$$
\begin{aligned}
Q & =C^{T} Q_{y} C \\
N & =C^{T} Q_{y} D \\
R & =R_{y}+D^{T} Q_{y} D
\end{aligned}
$$

2. Given the first order system with quadratic criterion

$$
\begin{aligned}
\dot{x}(t) & =u(t) \\
J & =\frac{1}{2} q\left\{x\left(t_{f}\right)\right\}^{2}+\frac{1}{2} \int_{0}^{t_{f}} u(t)^{2} d t
\end{aligned}
$$

Use the equations

$$
\begin{aligned}
\dot{M} & =-M A \\
\frac{d}{d t}[\mathcal{Q}(t)]^{-1} & ==-M B R^{-1} B^{T} M^{T}
\end{aligned}
$$

show that

$$
u(t)=\frac{-1}{\frac{1}{q}+T} x(t)
$$

where $T=t_{f}-t$ is the time to go.
3. From Bryson Given the first order system with quadratic criterion

$$
\begin{aligned}
\dot{x}(t) & =-x(t)+u(t) \\
J & =\frac{1}{2} S_{f} x_{f}^{2}+\frac{1}{2} \int_{0}^{t_{f}} u(t)^{2} d t
\end{aligned}
$$

where $x(0)=x_{0}$ and $x_{f}=x\left(t_{f}\right)$ and all quantities are scalars. Show that the closed loop control law is given by

$$
u(t)=-K(t) x(t)
$$

where $T=t_{f}-t=$ time to go, and

$$
K(t)=\frac{e^{-2 T}}{\frac{1}{S_{f}}+\frac{1}{2}\left(1-e^{-2 T}\right)}
$$

You need to derive the solution in two different ways, using the equation

$$
\dot{P}=A P+P A^{T}-B R^{-1} B^{T}
$$

and then the equations

$$
\begin{aligned}
\dot{M} & =-M A \\
\frac{d}{d t}[\mathcal{Q}(t)]^{-1} & ==-M B R^{-1} B^{T} M^{T}
\end{aligned}
$$

4. Consider the tracking problem

$$
\begin{aligned}
\operatorname{minimize} J= & \frac{1}{2}(y(T)-r(T))^{T} P(y(T)-r(T))+\frac{1}{2} \int_{t_{0}}^{T}\left[(y-r)^{T} Q(y-r)+u^{T} R u\right] d t \\
\text { subject to } & \dot{x}=A x+B u \\
& y(t)=C x(t) \\
& P \geq 0, Q \geq 0, R>0, P=P^{T}, Q=Q^{T}, R=R^{T}
\end{aligned}
$$

Here $r(t)$ is a reference signal we would like to track. Show that the solution to this problem can be written as:

$$
\begin{aligned}
\dot{S} & =-S A-A^{T} S+S B R^{-1} B^{T} S-C^{T} Q C, \quad S(T)=C^{T} P C \\
\dot{g} & =-(A-B K)^{T} g+C^{T} Q r, \quad g(T)=-C^{T} \operatorname{Pr}(T) \\
K(t) & =R^{-1} B^{T} S \\
u(t) & =-K x-R^{-1} B^{T} g
\end{aligned}
$$

