
ECE-597: Optimal Control
Homework #7

Due: Thursday November 1, 2007

1. In this problem we will use the Matlab routine fopt.m to solve a minimum time problem.
Specifically, consider the problem

minimize J = tf

subject to ẋ(t) = cos(u)− y(t)

ẏ(t) = sin(u)

x(0) = 3.659, y(0) = −1.864

x(tf ) = 0, y(tf ) = 0

What makes this routine so much fun is that (1) you need to make an initial guess for the final
time, and (2) the routine seems quite sensitive to the initial guess for the control sequence.
Initially use the routine with k = 1e− 5, told = 5e− 5, tols = 5e− 5, mxit = 25, N = 100
time steps, and an initial guess of final time tf = 10 with the initial control sequence all zeros.

However, the initial guess of the optimal final time of tf = 10 is actually too large. The true
optimal final time is between 4 and 8 seconds. You are to try to find an initial guess of the
control sequence and optimal time to produce a good estimate of the final time. You need
to try at least four different sets of initial estimates. You are expected to work alone on this
part. I don’t want everybody to do the same thing.

For each of your simulations, you need to plot u(t) vs. t and y(t) vs. x(t) on the same graph.
One of your titles should indicate the estimated final time.

2. From Bryson. A rocket is launched with velocity u0 parallel to the x-axis, v0 parallel to
the y-axis, with a constant thrust specific force a. The system starts from x(0) = y(0) = 0.
We want to find θ(i) to minimize the final time and require x(N) = xf and y(N) = yf . The
equations of motion are:

u(i + 1) = u(i) + a∆T cos(θ(i))

v(i + 1) = v(i) + a∆T sin(θ(i))

y(i + 1) = y(i) + ∆Tv(i) +
a

2
[∆T ]2 sin(θ(i))

x(i + 1) = x(i) + ∆Tu(i) +
a

2
[∆T ]2 cos(θ(i))

a) Show that dimensionless equations of motion are:

u(i + 1) = u(i) + ∆T cos(θ(i))

v(i + 1) = v(i) + ∆T sin(θ(i))

x(i + 1) = x(i) + ∆Tu(i) +
1

2
[∆T ]2 cos(θ(i))

y(i + 1) = y(i) + ∆Tv(i) +
1

2
[∆T ]2 sin(θ(i))
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where time is measured in units of tf , (u, v) in units of atf , and (x, y, xf , yf ) in units of at2f .

b) Show that

λx = νx

λy = νy

λu(i) = (N − i)∆Tνx

λv(i) = (N − i)∆Tνy

c) Using the optimality condition, show that

tan(θ(i)) =
νy

νx

which means θ(i) = θ0, a constant.

d) By iterating forward (at least through i = 3), show that

u(i) = u0 + i∆T cos(θ0)

v(i) = v0 + i∆T sin(θ0)

x(i) = i∆Tu0 +
1

2
[i∆T ]2 cos(θ0)

y(i) = i∆Tv0 +
1

2
[i∆T ]2 sin(θ0)

e) Determine the two nonlinear equations that need to be solved for ∆ and θ0 to complete
the solution to this problem.

3. From Bryson. A bead slides on a wire without friction in a gravitational field. γ(t) is the
angle with respect to the horizontal. The equations of motion are

V̇ (t) = g sin(γ(t))

ẋ(t) = V (t) cos(γ(t))

ẏ(t) = V (t) sin(γ(t))

We have x(0) = y(0) = V (0) = 0 and we want to reach the final point x(tf ) = xf , y(tf ) = yf

in the minimum time (make tf as small as possible).

a) Show that the dimensionless equations of motion are given by

V̇ (t) = sin(γ(t))

ẋ(t) = V (t) cos(γ(t))

ẏ(t) = V (t) sin(γ(t))

where (x, y) are measured in terms of xf , t is measured in terms of
√

xf

g
, and V is measured

in terms of
√

gxf .
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b) Show that

λx = νx

λy = νy

c) Show that H = −1.

d) Using the optimality condition, show that

λv(t) = V (t)[νx tan(γ(t))− νy]

We have the initial condition V (0) = 0. From the optimality condition, this means cos(γ(0)) =
0. Let’s choose γ(0) = π

2
(This is one of many possible choices.)

e) Now substitute the equation for λv(t) into your expression for H, and use the fact that
H = −1 to show

V (t)νx sec(γ(t)) = −1

f) Taking the derivative of the expression you found in part e, and using the fact that
V̇ (t) = sin(γ(t)) (since we are using the dimensionless equations) and −1 = V (t)νx sec(γ(t)),
show that

γ(t) =
π

2
+ νxt

g) Starting from V̇ (t) = sin(γ(t)), your answer for part f, and some simple trigonometric
identities, show that

V (t) =
1

νx

sin(νxt)

h) Starting from ẋ(t) = V (t) cos(γ(t)) and ẏ(t) = V (t) sin(γ(t)) and your answer for part f,
show that

x(t) =
−1

2νx

(t− 1

2νx

sin(2νxt))

y(t) =
1

4ν2
x

(1− cos(2νxt))

i) Determine the two nonlinear equations that must be solved for νx and tf to finally solve
this problem.
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Appendix
Continuous-Time Problems with Open Final Time using fopt.m

We will be utilizing the routine fopt.m to solve continuous-time optimization problems of
the form:

Find the input u(t), t0 ≤ t ≤ tf , and final time tf to minimize

J = φ[x(tf ), tf ]

subject to the constraints

ẋ(t) = f [x(t), u(t), t]

ψ[x(tf ), tf ] = 0

x(0) = x0 (known)

In order to use the routine fopt.m, you need to write a routine that returns one of three
things depending on the value of the variable flg. The general form of your routine will be
as follows:

function [f1,f2,f3] = bobs_fopt(u,s,t,flg)

Here u is the current input, u(t), and s (s(t)) contains the current state, so ṡ(t) = f(s(t), u(t), t).
Your routine should compute the following:

if flg = 1 f1 = ṡ(t) = f(s(t), u(t), t)
if flg = 2 f1 = Φ, f2 = Φs, f3 = Φt

if flg = 3 f1 = fs, f2 = fu

Note: Φt is just the partial derivative with respect to t, not the total derivative.
An example of the usage is:

[tu,ts,tf,nu,la0] = fopt(’bobs_fopt’,tu,tf,s0,k,told,tols,mxit,eta)

The (input) arguments to fopt.m are the following:

• the function you just created (in single quotes).

• tu is an initial guess of times (first column), and control values (subsequent columns)
that minimizes J . If there are multiple control signals at a given time, they are all in
the same row. Note that these are just the initial time and control values, the times
and control values will be modified as the program runs. The initial time should start
at zero.

• the initial states, s0. Note that you must include and initial guess for the “cumulative”
state q also.
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• the final time, tf . This is just and initial guess!

• k, the step size parameter, k > 0 to minimize. Often you need to play around with
this one.

• told, the tolerance (a stopping parameter) for ode23 (differential equation solver for
Matlab)

• tols, the tolerance (a stopping parameter), when |∆u| < tols between iterations, the
programs stops.

• mxit, the maximum number of iterations to try.

• eta, where 0 < eta ≤ 1, and d(psi) = -eta*psi is the desired change in the terminal
constraints on the next iteration. This is an optional input.

fopt.m returns the following:

• tu the optimal input sequence and corresponding times. The first column is the time,
the corresponding columns are the control signals. All entries in one row correspond
to one time.

• ts the states and corresponding times. The first column is the time, the corresponding
columns are the states. All entries in one row correspond to the same time. Note that
the times in tu and the times in ts may not be the same, and they may not be evenly
spaced.

• tf , the optimal final time

• nu, the Lagrange multipliers on psi

• la0 the Lagrange multipliers

It is usually best to start with a small number of iterations, like 5, and see what happens
as you change k. Start with small values of k and gradually increase them. It can be very
difficult to make this program converge, especially if your initial guess is far away from the
true solution.

Note!! If you are using the fopt.m file, and you use the maximum number of allowed
iterations, assume that the solution has NOT converged. You must usually change the value
of k and/or increase the number of allowed iterations. Do not set tol to less than about 5e-5.
Also try to make k as large as possible and still have convergence.

Example A Given a rocket engine with maximum constant thrust T , operating for a time
tf , we want to find the thrust direction history θ(t) to transfer a spacecraft from a given
initial circular orbit to the largest possible circular orbit. r is the radial distance of the space
craft from the attracting center, u = radial component of velocity, v = tangential component
of velocity, m = mass of spacecraft, −ṁ = fuel consumption rate, µ = gravitational constant

of attracting center. Assume we measure time in units of
√

r3
o/µ, r in units of ro, u and v in
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units of
√

µ/ro, m in units of mo, and thrust in units of µmo/r
2
o, the problem can be stated as:

Given r(0) = 1, u(0) = 0, v(0) = 1, θ(0) = 0, u(tf ) = 0, v(tf ) = 1/
√

rf ) and a = T
1−|ṁ|t , find

β(t) to achieve these results while minimize tf .

The dimensionless equations of motion are:

ṙ = u

u̇ =
v2

r
− 1

r2
+ a sin(β)

v̇ = −uv

r
+ a cos(β)

θ̇ =
v

r

Here we will assume T = 0.1405, ṁ = 0.07489, rf = 1.5237.

Let’s define the state vector as

s =




r
u
v
θ




and let’s define

Φ[s(tf ), tf ] =

[
φ[s(tf ), tf ]
ψ[s(tf ), tf ]

]

For this problem we want to minimize tf , so we have

φ[s(tf ), tf ] = tf

We also have the hard terminal constraints

ψ[s(tf ), tf ] =




r − r(tf )
u

v − 1/
√

rf




so we can write

Φ[s(tf ), tf ] =




tf
r − rf

u
v − 1/

√
rf




We can then write

f =




f1

f2

f3

f4


 =




u
v2

r
− 1

r2 + a sin(θ)
−uv

r
+ a cos(θ)

v
r
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Next we need

Φs(tf )[s(tf ), tf ] =

[
φs(tf )[s(tf ), tf ]
ψs(tf )[s(tf ), tf ]

]

=




∂φ[s(tf ),tf ]

∂r(tf )

∂φ[s(tf ),tf ]

∂u(tf )

∂φ[s(tf ),tf ]

∂v(tf )

∂φ[s(tf ),tf ]

∂θ(tf )
∂ψ[s(tf ,tf )]

∂r(tf )

∂ψ[s(tf ),tf ]

∂u(tf )

∂ψ[s(tf ),tf ]

∂v(tf )

∂ψ[s(tf ),tf ]

∂θ(tf )




=




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0




and

Φtf [s(tf ), tf ] =




∂φ[s(tf ),tf ]

∂tf
∂ψ[s(tf ),tf ]

∂tf




=




1
0
0
0




Then we need

fs =
[

∂f
∂r(t)

∂f
∂u(t)

∂f
∂u(t)

∂f
∂θ(t)

]
=




∂f1

∂r(t)
∂f1

∂u(t)
∂f1

∂v(t)
∂f1

∂θ(t)
∂f2

∂r(t)
∂f2

∂u(t)
∂f2

∂v(t)
∂f2

∂θ(t)
∂f3

∂r(t)
∂f3

∂u(t)
∂f3

∂v(t)
∂f3

∂θ(t)
∂f4

∂r(t)
∂f4

∂u(t)
∂f4

∂v(t)
∂f4

∂θ(t)




=




0 1 0 0

−v2

r2 + 2
r3 0 2v

r
0

uv
r2

−v
r

−u
r

0




and finally

fu = fβ =




∂f1

∂θ(t)
∂f2

∂θ(t)
∂f3

∂θ(t)
∂f4

∂θ(t)




=




0
a cos(β(t))
−a sin(β(t))

0




This is implemented in the routine bobs fopt a.m on the class web site, and it is run using
the driver file fopt example a.m.
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