
ECE-597: Optimal Control
Homework #3

Due: Thursday September 27, 2007

1. Discrete-time Linear Quadratic Regulator via Dynamic Programming In this problem we
will derive the recursive equations the need to be solved in order to implement a discrete
linear quadratic regulator (LQR).

Assume we have the following discrete-time state variable model

x(k + 1) = Gx(k) + Hu(k)

We want to find the control sequence u(k) to minimize the following performance index

J =
1

2
x(N)T Qfx(N) +

1

2

N−1∑

k=1

{
x(k)T Qx(k) + u(k)T Ru(k)

}

where Q = QT , R = RT , Qf = QT
f > 0

We will try and solve this recursively, using the ideas from Dynamic Programming. First we
define

Ji =
1

2
x(N)T Qfx(N) +

1

2

N−1∑

k=i

{
x(k)T Qx(k) + u(k)T Ru(k)

}

So J0 = J . For i = N we have J∗N = 1
2
x(N)T Qfx(N). Next, we look at Ji for i = N − 1,

JN−1 =
1

2
x(N)T Qfx(N) +

1

2
x(N − 1)T Qx(N − 1) +

1

2
u(N − 1)Ru(N − 1)

Now we (you) need to find the control u(N − 1) to minimize this expression.

a) Use the state variable model to eliminate x(N).

b) Write out all of the terms in JN−1. If you combine terms correctly, you should have five
terms.

c) Find the optimal u(N − 1) by taking the derivative of JN−1 with respect to u(N − 1).
You should get

u∗(N − 1) = −K(N − 1)x(N − 1)

K(N − 1) =
[
R + HT S(N)H

]−1
HT S(N)G

Where we have written Qf = S(N) for reasons that will become clear shortly. Note that we
have state variable feedback!



d) Now put u∗(N − 1) into JN−1 to produce J∗N−1. After some manipulation, you should get

J∗(N − 1) =
1

2
x(N − 1)T S(N − 1)x(N − 1)

S(N − 1) = {G−HK(N − 1)}T S(N) {G−HK(N − 1)}+ K(N − 1)T RK(N − 1) + Q

e) Now we need to look at Ji for i = N − 2

JN−2 =
1

2
x(N − 1)T S(N − 1)x(N − 1) +

1

2
x(N − 2)T Qx(N − 2) +

1

2
u(N − 2)Ru(N − 2)

We need to find the u(N − 2) to minimize this function. At this point, those of you with
even the remotest clue should realize that we have already solved this problem! All we need
to do is change indices N → N − 1.

Our solution is as follows:

S(N) = Qf

for i = N − 1, ...0

K(i) =
[
R + HT S(i + 1)H

]−1
HT S(i + 1)G

u(i) = −K(i)x(i)

S(i) = {G−HK(i)}T S(i + 1) {G−HK(i)}+ K(i)T RK(i) + Q

2. The program dynamic tracker.m implements a dynamic programming approach to
solving the problem of finding the optimal control signal u(t) to minimize the function

J = (y(N)− r(N))T Qf (y(N)− r(N)) +
k=N−1∑

k=0

[
(y(k)− r(k))T Q(y(k)− r(k)) + u(k)T Ru(k)

]

where r(k) is a known signal we want to track, and we have the continuous-time state
equations

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

which, assuming a zero order hold, correspond to the discrete-time equations

x(k + 1) = Gx(k) + Hu(k) ≈ (I + A∆T )x(k) + (B∆T )u(k)

y(k) = Cx(k)

Note that since with dynamic programming it is possible to change the time interval (∆T )
we need to be able to make our model reasonably accurate for any time step size. This
an optimization problem with soft terminal constraints, since we cannot force our system to
exactly match r(N) at the final time, we only penalize deviations from this. An optimization



problem with hard terminal constraints would force Y (N) = R(N).

For this problem assume A = 1, B = 1, C = 1, and 0 ≤ t ≤ 2.

We want to look at trying to track the inputs

r(t) = u(t)

r(t) = tu(t)

r(t) = cos(2πt)

Your are to modify and run the code dynamic tracker.m to do the following:

• Have the dynamic system track the input signal as well as possible throughout the
interval 0 ≤ t ≤ 2

• Have the dynamic system have the same value at the end of the interval (at t = 2) as
r(t) while minimizing the value of the control signal u(t).

You need to do each of the above for the initial condition x(0) = 0.5 For these programs you
need to be sure Q > 0, R > 0, and Qf > 0

Since this dynamic tracking problem can be solved (assuming R is invertible), the program
will also plot the results using the solution to the problems above. For each case, the optimal
cost will be displayed at the top of the graph. If your meshes are fine enough the values
should be nearly equal, though the optimal cost for the dynamic programming solution will
often be larger. Try not to be too depressed that we did not find the solution to this, we
will next week.

As you go through these problems, you may need to change the range of possible x values
and the range of possible u values. You will have to iterate a bit to determine a good range
for these values. (If the program does not plot the results for 0 ≤ t ≤ 2 you will need to
change these values.) Your final results should look pretty much like those of the optimal
tracking algorithm. You should have 6 graphs to turn in with this part.
You should notice three things from these plots:

• The cost for the dynamic programming routine is always greater than for the optimal
tracker

• The control signal is smoother for the optimal tracker than for the dynamic program-
ming routine

• For tracking the sinusoid, the control signal u(t) actually leads the signal r(t) we are
trying to track


