ECE-521 Control Systems II Homework 9

Due at the beginning of class, Tuesday February 17, 2005

1) For this problem, assume $\underline{p} = \begin{bmatrix} a \\ b \end{bmatrix}, \underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, A = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$ and show the following: a) for $f(\underline{x}) = \underline{p}^T \underline{x}, \frac{df}{d\underline{x}} = \underline{p}$ b) for $f(\underline{x}) = \underline{x}^T \underline{p}, \frac{df}{d\underline{x}} = \underline{p}$ c) for $f(\underline{x}) = A\underline{x}, \frac{df}{d\underline{x}} = A^T$ d) for $f(\underline{x}) = A^T \underline{x}, \frac{df}{d\underline{x}} = A$ e) for $f(\underline{x}) = \underline{x}^T A\underline{x}, \frac{df}{d\underline{x}} = (A + A^T)\underline{x}$

2) The error vector \underline{e} between observation vector \underline{d} and the estimate of the input $\underline{\hat{x}}$ is $\underline{e} = \underline{d} - A\underline{\hat{x}}$. We want to weight the errors by a symmetric matrix R. Find $\underline{\hat{x}}$ to minimize $\underline{e}^T R \underline{e}$. (This is a weighted least squares.)

3) Assume we expect a process to follow the equation $y(t) = \frac{1}{ct + d\sqrt{t}}$, and we have

measurements:

t	y(t)
1.0	0.30
2.0	0.21
3.0	0.14
4.0	0.12
5.0	0.11
6.0	0.09

a) Determine a least squares estimate of the parameters c and d.

b) Using your least squares estimate of the parameters, estimate the value of y(2.5).

c) Suppose we believe the first three measurements are twice a reliable as the last three. Determine a reasonable weighted least squares estimate of parameters c and d.

4) Assume we expect a process to follow the following equation: $\gamma(x) = \varepsilon e^{\beta x}$

Assume we measure $\gamma(x)$ at various locations x:

$\gamma(x)$
2.45
2.38
2.30
1 40
0.70

a) Determine a least squares fit to the parameters ε and β . (*Hint: Try logarithms.*)

b) Estimate $\gamma(3.0)$

5) Assume we have an experimental process we are modeling, and, based on sound physical principles, we believe the relationship between x and y to be

$$y(x) = \left(\frac{\alpha}{x}\right)^{\beta}$$

and we have the following measurements:

x	у
1.0	8.0
2.0	1.0
3.0	0.3
4.0	0.1

- a) Find a least squares estimate for α and β . (Hint: You cannot solve for α directly. Let $w = \beta \log(\alpha)$, solve for w and β , and then infer α .)
- b) Estimate y(3.5).