
ECE-521 Control Systems II 
Homework  5 

 
Due at the beginning of class, Tuesday January 18 , 2005 
 
1) Problem B-12-19 from the textbook. You should write out the equations to be solved, 
and then use Maple to final all possible solutions. Determine the eigenvalues for each 
possible P matrix. (Ans. 3 possible P matrices, 1 2( )u t x x= − − ). 
 
2) Problem B-12-20 from the textbook. Do not use Maple or Matlab except to check 
yourself. (Ans. 1 2( ) 2u t x x µ= − − + ) 
 
 
Preparation for Lab 4 (To be done individually, no Maple):  
 
In this derivation we will make a state variable model for a regular pendulum (a 
pendulum hanging down) attached to the first cart. It will be easier to measure the 
parameters for a regular pendulum since it is a stable system. In the lab we will initially 
try and control the regular pendulum. Once this is working, we will try to control an 
inverted pendulum. To go from the model of a regular pendulum to the model of an 
inverted pendulum we use the substitution .  l l→−
 
3) In a previous homework we derived the equations of motion for an inverted pendulum on a cart as 
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The mass of the cart is M , the mass at the center of mass of  the pendulum is m , the moment of inertial 
of the pendulum about its center of mass is , J L  is the length of the pendulum, and l is the distance 
from the pivot to the center of  mass of the pendulum. The angleθ  is measured counterclockwise from 
straight up,  is the displacement of the first cart (positive to the right), and x g is the gravitational 
constant. 

 
In order to derive the model parameters we need, we will first model a regular pendulum configuration. 
This will be easier to deal with since it is an inherently stable system. In order to change our model from 
the inverted pendulum to a regular pendulum, we make the transformation  in the above 
equations. Now the angle

l →−l
θ  is measured counterclockwise from straight down. The configuration for the 

regular pendulum is shown below: 
 



 
 
a) Show that the equations of motion for the regular pendulum can be written as 
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b) Using the small angle/small velocity assumption, show that we can approximate the above equations 
of motion as 
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c) We can rewrite the first equation above as 
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What is 2
θω ? 

 
d) If we assume the cart is fixed, then 0x =  and we have 
 

2 0θθ ω θ+ =  
This is the equation for a simple pendulum. If the pendulum is deflected a small angle and released, it 
will oscillate with frequency θω . If we measure the period of the oscillations Tθ  how do we find θω ? 
 



e) We can rewrite the second equation from step (b) as 
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Find expressions for 1ω , 1ζ , , and  in terms of m , 1K 2K M , , and . If we assume there is not input 
( ) and the pendulum does not move very much (

k l
0F = 0θ ≈ ) then we can use the log-decrement method 

to get initial estimates of 1ω and 1ζ . 
 
f) Assuming we apply a step input of amplitude A  to the cart, show that in steady state we get 
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g) Show that 
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We need to measure the gravitational constant in cm, since all other distances are measured in cm. 
 
h) Show that 
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We can use this expression to determine  and get better estimates of 1K 1ω and 1ζ . 
 
i) We can rewrite our linearized dynamical equations as 
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By substituting the second equation into the first equation, show that we get 
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and substituting the first equation into the second equation we get 
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j) Defining , , 1q x= 2q x= 3q θ= , and 4q θ= , show that we get the following state equations 
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k) If we now want to model the inverted pendulum ( l  to go back to the inverted pendulum), which 
terms change in the matrices above? 

l→−

 
l) When we try and fit the frequency response data we see in the lab we will often get an unusual 
response. To understand this response we will analytically try and show what is happening. If you've not 
screwed up, you should have obtained values of 
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If we assume that the mass of the cart and pendulum attachment is much larger than the mass at the 
center of mass of the pendulum, then we have M m . Secondly, is the moment of inertia about the 
center of mass of the pendulum, is the mass at the center of mass of the pendulum, and l is the 
distance from the pivot to the center of mass of the pendulum. For our systems, the pendulum bars have 
negligible mass and all of the mass is essentially concentrated at the center of mass. Hence we have 

. Using these two assumptions, show that
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That is, there is a pole/zero cancellation! This is the effect you will often see in lab. 
 



n) In trying to control the inverted pendulums on the ECP systems, there is one last little problem we 
need to deal with. The ECP system sets zero degrees to be where ever the pendulum is when the system 
is reset. For the regular pendulum, in which the pendulum is hanging down, there is no problem since 
we just reset the system when the pendulum is at rest pointing down. However, for the inverted 
pendulum, we have a problem in that we really won't be able to hold the pendulum vertical when 
resetting the system. Even slight deviations from exactly vertical will screw us up. To solve this, we will 
modify how the Simulink model of the ECP system identifies angles by using the following piece of 
Simulink code: 

 
  
This is from the manipulate data part of  ECP_Model210_Inverted_Pendulum_Template.mdl  you 
will be using in lab. The lower path usually gets the angle of the pendulum (in radians) and then takes its 
derivative. However, there have been a few changes made so our Simulink model believes that vertical 
(up) is really 0 degrees. For this problem, the ECP system believes 0 degrees is straight down, and 
assume the angle coming out of the scale2 block is 90 degrees plus or minus 5 degrees (nearly straight 
up).  What do these angles map to (what is the output just after the summation?) 



 
4) Modify (save under a new filename before modifying) the two degree of freedom Simulink model 
from homework 2 and corresponding Matlab code to work with the regular pendulum model. (The state 
model is available one the course website.) Specifically, you need to  
 

• Modify the matrix get_desired_states so that when you do the lab, the ECP system will output 
states x1, x1_dot, theta, and theta_dot 

• Have 4 model outputs, m_x1, m_x1_dot, m_theta, m_theta_dot 
• Plot the position of the cart, the velocity of the cart, the position of the pendulum, and the 

velocity of the pendulum. All plots should be neatly organized on one page. 
• Set the input of the system to zero (this is a regulator problem, in that we are just trying to hold 

the pendulum in place) 
• Set the initial value of the pendulum to 0.015 radians and all other initial conditions to zero. 
•  Utilize the linear quadratic regulator or pole placement method to control the position of the 

pendulum and the cart. The goal is to keep the pendulum pointing straight down and keep the 
cart from moving more than about 2.5 cm in each direction. The control effort should also be less 
than 0.4 and the system should come to steady state in less than 0.1 seconds.   

 
You will need to turn in you plot, your Simulink code, and your Matlab code.  
 
5) Utilize the results of problem 6 to model the inverted pendulum. The only thing you should need to 
change is the state model. (The state model is available one the course website.) Specifically, you need 
to  
 

• Set the input of the system to zero (this is a regulator problem, in that we are just trying to hold 
the pendulum in place) 

• Set the initial value of the pendulum to 0.015 radians and all other initial conditions to zero. 
•  Utilize the linear quadratic regulator or pole placement method to control the position of the 

pendulum and the cart. The goal is to keep the pendulum pointing straight up and keep the cart 
from moving more than about 2.5 cm in each direction. The control effort should also be less 
than 0.4. Limiting the cart motion is usually the most difficult part. 

 
You will need to turn in you plot for this part..  


