Due at the beginning of class, Tuesday January 11, 2005
No Lab Tuesday January 11, 2005
Exam 1, Thursday January 13, 2005

1) Consider the following state variable model:

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)
\end{aligned}
$$

a) Is the system controllable? Is the system observable?
b) Assume state variable feedback of the form $u(t)=G_{p f} r(t)-k x(t)$. Show that the transfer function for the system with state variable feedback is given by

$$
G(s)=C(s I-\tilde{A})^{-1} \tilde{B}=\frac{G_{p f}}{s^{2}+\left(k_{2}-1\right) s+\left(k_{1}-1\right)}
$$

c) Using the results from part (b), determine the values of k_{1} and k_{2} so the closed loop poles are at $-1 \pm j$.
d) Use the transformation matrix T method (page 833 of text) to compute the required values of k_{1} and k_{2} so the closed loop poles are at $-1 \pm j$.
e) Use Ackerman's formula to compute the required values of k_{1} and k_{2} so the closed loop poles are at $-1 \pm j$.
2) Consider the following state variable model:

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

a) Is the system controllable? Is the system observable?
b) Assume state variable feedback of the form $x(t)=G_{p f} r(t)-k x(t)$. Show that the transfer function for the system with state variable feedback is given by

$$
G(s)=C(s I-\tilde{A})^{-1} \tilde{B}=\frac{G_{p f}(s-2)}{s^{2}+\left(k_{2}-2\right) s+\left(k_{1}-2 k_{2}-1\right)}
$$

c) Using the results from part (b), determine the values of k_{1} and k_{2} so the closed loop poles are at $-1 \pm j$.
d) Use transformation matrix T method (page 833 of text) to compute the required values of k_{1} and k_{2} so the closed loop poles are at $-1 \pm j$.
e) Use Ackerman's formula to compute the required values of k_{1} and k_{2} so the closed loop poles are at $-1 \pm j$.
3) Consider a the following state variable model

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] x(t)+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)
\end{aligned}
$$

How many linearly independent columns are there in the controllability matrix? In the observability matrix? Is the system controllable? Is the system observable?
4) Consider a the following state variable model

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] x(t)+\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 0
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

How many linearly independent columns are there in the controllability matrix? In the observability matrix? Is the system controllable? Is the system observable?

