ECE-521 Control Systems II
 Homework 7

Due Date: Thursday May 20

1) For a system with plant

$$
G_{p}(s)=\frac{s+3}{s(s-1)}
$$

show that the quadratic optimal closed loop transfer function is

$$
G_{0}(s)=\frac{10(s+3)}{s^{2}+12.7 s+30}
$$

when $q=100$.
2) For a system with plant

$$
G_{p}(s)=\frac{s-1}{s(s-2)}
$$

show that the quadratic optimal closed loop transfer function is

$$
G_{0}(s)=\frac{-10(s-1)}{s^{2}+11.1 s+10}
$$

when $q=100$.
3) For a one degree of freedom system like we have in lab, with plant

$$
G_{p}(s)=\frac{15}{0.0025 s^{2}+0.0080 s+1}
$$

a) Show that when $q=0.1$ the quadratic optimal closed loop transfer function is

$$
G_{0}(s)=\frac{1856.6}{s^{2}+55.5 s+1939.1}
$$

b) Show that the controller is given by

$$
G_{c}(s)=\frac{0.0038 s^{2}+0.012 s+1.5}{0.012 s^{2}+0.67 s+1}
$$

For the following three problems, it is useful to remember

- our compensator has the form $G_{c}(s)=\frac{B(s)}{A(s)}$, where $B(s)=B_{0}+B_{1} s+\ldots$ and $A(s)=$ $A_{0}+A_{1} s+\ldots$
- the plant has the form $G_{p}(s)=N(s) / D(s)$, where $N(s)=N_{0}+N_{1} s+\ldots$ and $D(s)=$ $D_{0}+D_{1} s+\ldots$
- The desired characteristic polynomial for the closed loop transfer function is $D_{0}(s)=$ $F_{0}+F_{1} s+F_{2} s^{2}+\ldots$
- To determine the equations to solve set

$$
A(s) D(s)+B(s) N(s)=D_{0}(s)
$$

and equate coefficients of s. This will give you the system of equations to solve.

- To use the compensator to make a system a type one system, set $A_{0}=0$

4) For the plant

$$
G_{p}(s)=\frac{1}{s(s+2)}
$$

show that the first order compensator that will put the closed loop poles at $-1 \pm j$ and -3 is $G_{c}(s)=2$.
5) For the plant

$$
G_{p}(s)=\frac{1}{s+2}
$$

Assume we want to place both closed loop poles at -4 and also have a type 1 system. Show that the first order compensator that will do this is given by

$$
G_{c}(s)=\frac{6(s+2.667)}{s}
$$

6) For a plant like the systems we have in lab with transfer function given by

$$
G_{p}(s)=\frac{6000}{s^{2}+3.2 s+400}
$$

a) Show that the first order compensator that places all three closed loop poles at -5 is given by

$$
G_{c}(s)=\frac{-0.0605 s-0.7658}{s+11.8}
$$

Note that the numerator of this compensator make it pretty useless for tracking a step input.
b) Show that the second order system that places all four closed loop poles at -5 and produces a type 1 system is given by

$$
G_{c}(s)=\frac{-0.5063 s^{2}-1.0367 s+0.1042}{s(s+16.8)}
$$

