ECE-520 Control Systems II
 Homework 3

Due Date: Tuesday March 30

If matrix P is given as

$$
P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then

$$
P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

and the determinant of P is given by $a d-b c$.
The general for for writing a continuous time state variable system is

$$
\begin{aligned}
& \underline{\dot{x}}(t)=A \underline{x}(t)+B \underline{u}(t) \\
& \underline{y}(t)=C \underline{x}(t)+D \underline{u}(t)
\end{aligned}
$$

Now assume we are using state variable feedback, so that $\underline{u}(t)=f \underline{r}(t)-\underline{k}^{T} \underline{x}(t)$. Here $\underline{r}(t)$ is our new reference input, f is a scaling factor, and $k^{T}=\left[k_{1} k_{2}\right]$ is the feedback gain matrix. With this state variable feedback, we have the system

$$
\underline{\dot{x}}(t)=A \underline{x}(t)+B\left(f \underline{f}(t)-\underline{k}^{T} \underline{x}(t)\right)
$$

or

$$
\underline{\dot{x}}(t)=\tilde{A} \underline{x}(t)+\tilde{B} \underline{r}(t)
$$

where $\underline{r}(t)$ is the new input. For $D=0$, the transfer matrix is given by

$$
G(s)=C\left[(s I-\tilde{A})^{-1}\right] \tilde{B}
$$

For each of the systems below,

- determine the controllability matrix and if the system is controllable
- determine the observability matrix and if the system is observable
- determine the transfer matrix
- determine the transfer matrix when there is state variable feedback
- determine if k_{1} and k_{2} exist to allow us to place the poles arbitrarily

1
Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], D=0
$$

Not Controllable, Observable, $G(s)=\frac{(s-1) f}{(s-1)\left(s-1+k_{2}\right)}$
$\frac{2}{\text { Let }}$

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], D=0
$$

Controllable, Not Observable, $G(s)=\frac{s f}{s^{2}+\left(k_{2}-1\right) s+k_{1}}$
$\frac{3}{\text { Let }}$

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], D=0
$$

Controllable, Observable, $G(s)=\frac{f}{s^{2}+\left(k_{2}-1\right) s+\left(k_{1}-1\right)}$
$\frac{4}{4 e t}$

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], D=0
$$

Not controllable, Observable, $G(s)=\frac{(s+1) f}{\left(s+k_{1}\right)\left(s+k_{2}\right)-\left(k_{1}-1\right)\left(k_{2}-1\right)}$

