ECE 521: Control Systems II

Homework \#2
Due Tuesday March 23

1) With $\underline{u}_{o}^{T}=[0,-1.5]$ show that the equilibrium point of the following systems is $\underline{x}_{o}^{T}=[1,0.5]$ (just plug these into the equations, don't try to derive them...)

$$
\begin{aligned}
& \dot{x}_{1}=4 x_{1}+2 x_{2}^{2}+u_{1}+3 u_{2} \\
& \dot{x}_{2}=x_{1}^{3}+x_{2}+2 u_{1}+u_{2}
\end{aligned}
$$

Linearize these equations about these nominal points and write the result in state variable form.
2) Suppose we want to minimize a function while satisfying a constraint. For example, find the point in the plane $x+y=5$ nearest the origin.

$$
\begin{array}{rcl}
\text { minimize } & x^{2}+y^{2} & \text { (distance from origin) } \\
\text { subject to } & x+y-5=0 & \text { (must lie in plane) }
\end{array}
$$

We do this with Lagrange multipliers (λ) and form the minimization problem

$$
\operatorname{minimize} L(x, y, \lambda)=x^{2}+y^{2}+\lambda(x+y-5)
$$

where x, y, and λ are now variables. Set $\frac{d L}{d x}=0, \frac{\partial L}{d y}=0$, and $\frac{\partial L}{d \lambda}=0$ and show the optimal point is $x=5 / 2, y=5 / 2$.
3) We can also add constraints to vector minimization problems. Assume we want to find the minimum value of $\underline{x}^{T} A \underline{x}$ where A is a symmetric matrix, subject to the constraint the magnitude of the vector x is one. We can write this as

$$
\begin{array}{cc}
\text { minimize } & f(\underline{x})=\underline{x}^{T} A \underline{x} \\
\text { subject to } & 1-\underline{x}^{T} \underline{x}=0
\end{array}
$$

form

$$
L(\underline{x}, \lambda)=f(\underline{x})+\lambda\left(1-\underline{x}^{T} \underline{x}\right)
$$

Now set $\frac{\partial L}{\partial \underline{x}}=0$ and $\frac{\partial L}{\partial \lambda}=0$ and show that the minimum value is given by the smallest eigenvalue of A.
4) Find \underline{x} such that

$$
A \underline{x}=\underline{y}
$$

and \underline{x} is the minimum norm solution.
Hint: the minimum norm solution is the \underline{x} solution to the problem:

$$
\begin{aligned}
\operatorname{minimize} & \underline{x}^{T} \underline{x} \\
\text { subject to } & A \underline{x}=\underline{y}
\end{aligned}
$$

In this problem the Lagrange multiplier is a vector, and

$$
L(\underline{x}, \underline{\lambda})=\underline{x}^{T} \underline{x}+\underline{\lambda}^{T}(A \underline{x}-\underline{y})
$$

You should be able to show $\underline{x}=A^{T}\left(A A^{T}\right)^{-1} \underline{y}$
5) Consider the discrete time state variable system

$$
\underline{x}_{k+1}=G \underline{x}_{k}+H \underline{u}_{k}
$$

with the initial state $\underline{x}_{0}=\underline{0}$.
a) Show that after 3 time steps $(k=0,1,2)$, we have the system of equations

$$
\underline{x}_{3}=\left[\begin{array}{llll}
G^{2} H & G H & H
\end{array}\right]\left[\begin{array}{l}
\underline{u}_{0} \\
\underline{u}_{1} \\
\underline{u}_{2}
\end{array}\right]
$$

b) Assume we want to go from the origin to the final state \underline{x}_{f} in three time steps with a penalty on the amount of input. Show that we can formulate this as

$$
\begin{array}{rc}
\operatorname{minimize} & \underline{u}^{T} R \underline{u} \\
\text { subject to } & \underline{x}_{f}-Q \underline{u}=0
\end{array}
$$

what are \underline{u} and Q ?
c) Assuming that Q and R have full rank and R is a diagonal matrix, show that the control \underline{u} which minimizes the function is given by

$$
\underline{u}=R^{-1} Q^{T}\left(Q R^{-1} Q^{T}\right)^{-1} \underline{x}_{f}
$$

(note: Do Not assume Q^{-1} exists!).
d) Now assume

$$
G=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
1 & 0 & 3
\end{array}\right], H=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 0
\end{array}\right], \underline{x}_{0}=\underline{0}, \underline{x}_{f}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

and $R=$ diagonal $(1,2,3,4,5,6)$, i.e. $r_{11}=1, r_{22}=2, \ldots r_{66}=6$. What is the input \underline{u} to minimize $\underline{u}^{T} R \underline{u}$ and take the system from 0 to \underline{x}_{f} ?
6) Consider the following state variable system

$$
\begin{aligned}
& \underline{\dot{x}}=A \underline{x}+B \underline{u} \\
& \underline{y}=C \underline{x}+D \underline{u}
\end{aligned}
$$

a) Now consider transforming this to a new set of basis vectors (transforming the basis). Let $\underline{x}=Q \underline{z}$ where the columns of Q are the new basis vectors. Assuming that Q^{-1} exists, show that in the new basis the state variable system becomes:

$$
\begin{aligned}
\underline{\dot{z}} & =Q^{-1} A Q \underline{z}+Q^{-1} B \underline{u} \\
\underline{y} & =C Q \underline{z}+D \underline{u}
\end{aligned}
$$

b) Now consider the state system with the representation

$$
\begin{aligned}
\underline{\dot{x}} & =\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right] \underline{x}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \underline{x}
\end{aligned}
$$

Compute the eigenvalues and eigenvectors of the A matrix, call them \underline{q}_{1} and \underline{q}_{2}.
c) Construct the matrix $Q=\left[\underline{q}_{1} \underline{q}_{2}\right]$.
d) Rewrite the system using the eigenvectors as the basis vectors.
e) Determine an expression for A^{2} in terms of A and I and then show explicitly that the matrix A satisfies its own characteristic equation by using the A matrix and evaluating both sides of the equation.
f) Determine an expression for $e^{A t}$ using the Cayley-Hamilton method (matching functions on eigenvalues).
7) For matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

a) Find the eigenvalues and characteristic equation for A.
b) Determine an expression for A^{2} in terms of A and I and then show explicitly that the matrix A satisfies its own characteristic equation by using the A matrix and evaluating both sides of the equation.
c) Determine and expression for $e^{A t}$ using the Cayley-Hamilton method (matching functions on eigenvalues).
d) Determine $e^{A t}$ using the Laplace transform method.
8) Assume a matrix A is determined to have the following eigenvalues, $\lambda=-1,-1,-1,-2,-2,-3$. Determine the simultaneous equations that need to be solved to determine $e^{A t}$. DO NOT SOLVE!
9) When we have distinct eigenvalues and a single input system, the state equations will be decoupled, and we can write

$$
\dot{x}_{i}=\lambda_{i} x_{i}+\hat{b}_{i} u
$$

Determine the transfer functions for both continuous and discrete time instances $\left(H_{i}(s)=X_{i}(s) / U(s)\right)$ and the conditions on the system eigenvalues for stability.
10) For

$$
A=\left[\begin{array}{cc}
2 & \sqrt{3} \\
\sqrt{3} & 4
\end{array}\right]
$$

a) Determine $P(A)$ for $P(x)=x^{4}-5 x^{3}-x^{2}+6 x+1$ by computing the quotient $Q(x)$ and the remainder $R(x)$

$$
P(x)=Q(x) \Delta(x)+R(x)
$$

and using $P(A)=R(A)$
b) Compute $f(A)=e^{A t}$ using the Cayley-Hamilton Theory method (matching function on eigenvalues).

1

$$
\begin{gathered}
\delta \underline{\dot{x}}=\left[\begin{array}{ll}
4 & 2 \\
3 & 1
\end{array}\right] \delta \underline{x}+\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right] \delta u \\
5 \underline{u}^{T}=[0.71-0.52-0.23-0.040 .690 .59]
\end{gathered}
$$

6

$$
e^{A t}=\left[\begin{array}{cc}
2 e^{2 t}-e^{3 t} & e^{2 t}-e^{3 t} \\
2 e^{3 t}-2 e^{2 t} & 2 e^{3 t}-e^{2 t}
\end{array}\right]
$$

7

$$
e^{A t}=\left[\begin{array}{cc}
e^{t} & 0 \\
t e^{t} & e^{t}
\end{array}\right]
$$

$10 P(A)=A+I$

$$
e^{A t}=\left[\begin{array}{cc}
0.25 e^{5 t}+0.75 e^{t} & 0.433 e^{5 t}-0.433 e^{t} \\
0.433 e^{5 t}-0.433 e^{t} & 0.75 e^{5 t}+0.25 e^{t}
\end{array}\right]
$$

