ECE 521: Control Systems II

Homework \#1
Due: Tuesday March 16
For problems 1-5, let

$$
\underline{a}=\left[\begin{array}{l}
a \\
b
\end{array}\right], \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

and show the following:

1) for $f(\underline{x})=\underline{a}^{T} \underline{x}, \frac{d f}{d \underline{x}}=\underline{a}$
2) for $f(\underline{x})=\underline{x}^{T} \underline{a}, \frac{d f}{d \underline{x}}=\underline{a}$
3) for $f(\underline{x})=A \underline{x}, \frac{d f}{d \underline{x}}=A^{T}$
4) for $f(\underline{x})=A^{T} \underline{x}, \frac{d f}{d \underline{x}}=A$
5) for $f(\underline{x})=\underline{x}^{T} A \underline{x}, \frac{d \underline{f}}{d \underline{x}}=\left(A+A^{T}\right) \underline{x}$
6) The error vector \underline{e} between observation vector \underline{d} and estimate of the input $\underline{\hat{x}}$ is $\underline{e}=\underline{d}-A \underline{\hat{x}}$. We want to weight the errors by a matrix R , where R is symmetric $\left(R=R^{T}\right)$. Find $\underline{\hat{x}}$ to minimize $\underline{e}^{T} R \underline{e}$. (This is a weighted least squares.)
7) Show that any matrix A can be written as the sum of a symmetric matrix and a skew symmetric matrix. That is,

$$
\begin{aligned}
A & =R+Q \\
R & =R^{T} \\
Q & =-Q^{T}
\end{aligned}
$$

Determine R and Q.
8) Assume we expect a process to follow the following equation

$$
y(t)=\frac{1}{c t+d \sqrt{t}}
$$

Assume we measure the $y(t)$ at various times t :

t	$y(t)$
1.0	0.30
2.0	0.21
3.0	0.14
4.0	0.12
5.0	0.11
6.0	0.09

a) Determine a least squares estimate of the parameters c and d.
b) Estimate the value of $y(t)$ at $t=2.5$.
c) Suppose we believe all measurements made before time $t=3.5$ are twice as reliable as those made later. Determined a reasonable weighted least squares estimated of c and d.
9) Assume we expect a process to follow the following equation

$$
\gamma(x)=\epsilon e^{\beta x}
$$

Assume we measure the $\gamma(x)$ at various locations x :

x	$\gamma(x)$
0.0	2.45
0.1	2.38
0.4	2.30
2.0	1.40
4.0	0.70

a) Determine a least squares estimate of the parameters ϵ and β. (Hint: Try logarythms...)
b) Estimate the value of $\gamma(x)$ at $x=3.0$.
10) Assume we have an experimental process we are modeling and, based on sound physical principles, we assume a relationship between x and y to be

$$
y(x)=\left(\frac{\alpha}{x}\right)^{\beta}
$$

and we have the following measurements

y	x
8	1

12
0.33
0.14
write out and describe how to use a least squares technique to estimate the parameters α and β. Assume we have the general form

$$
\mathrm{a}=\mathrm{B} \mathbf{c}
$$

What are in the a and c vectors? What is in the B matrix? What are your estimates for α and β ?

Hint: you cannot solve for α directly. Let $w=\beta \log \alpha$ and solve for w and β, then infer α.
11) Linearize the following two systems about the origin, and write the results in state variable form

$$
\begin{aligned}
& \dot{x}_{1}=x_{1} x_{2}+3 x_{2}+u_{1}^{2}+u_{2} \\
& \dot{x}_{2}=4 x_{1}+x_{2}+x_{1} u_{2}^{2}+2 u_{1} \\
& \dot{x}_{1}=x_{1}^{2}-\sin \left(3 x_{2}\right)+u_{1}^{3}-u_{2} \\
& \dot{x}_{2}=x_{2}-u_{1}+x_{1} e^{-x_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 6 \underline{\hat{x}}=\left(A^{T} R A\right)^{-1} A^{T} R \underline{d} \\
& 8 \hat{y}(t)=(0.8104 t+2.4707 \sqrt{t})^{-1} \\
& 9 \hat{\gamma}(x)=2.519 e^{-0.3142 x} \\
& 10 \hat{y}(x)=\left(\frac{1.974}{x}\right)^{3.1183} \\
& 11
\end{aligned}
$$

$$
\begin{aligned}
\delta \underline{\dot{x}} & =\left[\begin{array}{ll}
0 & 3 \\
4 & 1
\end{array}\right] \delta \underline{x}+\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right] \delta \underline{u} \\
\delta \underline{\dot{x}} & =\left[\begin{array}{cc}
0 & -3 \\
1 & 1
\end{array}\right] \delta \underline{x}+\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] \delta \underline{u}
\end{aligned}
$$

