
ECE-520 Lab 2 
 Time and Frequency Domain Modeling of  Two Degree of 
Freedom Systems 
 
Overview 
 
In this lab, you will be modeling two two degree of freedom system using time-domain 
analysis and frequency domain analysis. You will model one rectilinear and one torsional 
system. The steps we will go through in this lab are very commonly used in system 
identification (determining the transfer function) of unknown systems. We will utilize 
these models in later labs so do a good job in this lab, your results in later labs will be 
affected by how well you perform in this lab. Take your time! 
 
Background 
 
For the following rectilinear two degree of freedom configuration (one of the springs 
many be missing 
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we get the following state equations  
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We need to identify all of these quantities to get the A  and B matrices for the state 
variable description. For our system 0D =  and  is determined by whatever we want 
the output to be. 
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For the following torsional two degree of freedom configuration  
 

 
 
we get the following state equations  
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We need to identify all of these quantities to get the  and A B matrices for the state 
variable description. For our system 0D =  and  is determined by whatever we want 
the output to be. For both of these systems, we can determine the parameters we need by 
fitting the frequency response data to the transfer functions 
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You will need to set up a folder for Lab 2 and copy all files from the class website into 
this folder, as well as the files you used for Lab 1. 
 



Part A: Modeling the Rectilinear System 
 
You need to fill out the data sheet indicating the configuration on the last page of the 
lab and turn it in! 
  
Step 0: Set Up the System.  Both the first and second carts should move.  The third cart 
should be fixed in place. In addition: 
 

• Either the carts should have an equal amount of weight on them, or the first cart 
should have more weight than the second cart.  You need at least one mass on 
each cart. 

 
• Either all springs connecting carts should have equal stiffness, or the springs 

should get less stiff from left  to right. You need to use at least two springs. 
 

• If you want to use the active damper, unscrew the screw in the damper.  
 
You will be using this configuration throughout the remainder of  the course so be sure 
you write down all of the information you need to duplicate this configuration. 
 
Step 1a)  Initial Estimates of  1ω , 1ζ , 2ω ,  and 2ζ  
 
From the equations of motion we have 
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a) If there is no applied force ( 0F = ) and the second cart is fixed in place ( ), we have 2 0x =
 

2 2
1 1 12 0s sζ ω ω+ + =  

 
Use the log decrement method to get our initial estimate of 1ω  and 1ζ . 
 
 
b) If the second cart is free to move and the first cart is fixed in place ( ), we have  1 0x =
 

2 2
2 2 22 0s sζ ω ω+ + =  

 
Use the log decrement method to get our initial estimate of 2ω and 2ζ . 



 
For the log-decrement analysis you will go through the following steps for each cart: 
 

• Be sure only one cart is free to move 
• Reset the system using ECPDSPresetmdl.mdl. 
• Modify Model210_Openloop.mdl so the input has zero amplitude. 
• Compile Model210_Openloop.mdl if necessary. 
• Connect Model210_Openloop.mdl to the ECP system. (The mode should be 

External.) 
• Displace whichever cart is free to move and hold it. 
• Start (play) Model210_Openloop.mdl and let the cart go. 
• Run the m-file log_dec.m. This should be in the same directory as 

Model210_Openloop.mdl and log_dec.fig. This routine assumes the position of 
the first cart is labeled x1, the position of the second cart is labeled x2,  and the 
time is labeled time. (These are the defaults in Model210_Openloop.mdl.)  

 
You will need to include these two log-decrement results in your memo. 
 
Step 1b) Estimating the Gains 1K  and 2K  
 
You will go through the following steps: 
 

• Be sure both carts are free to move 
• Reset the system using ECPDSPresetmdl.mdl. 
• Modify Model210_Openloop.mdl so the input is a step. Set the amplitude to 

something small, like 0.01 or 0.02 cm. 
• Compile Model210_Openloop.mdl 
• Connect Model210_Openloop.mdl to the ECP system. (The mode should be 

External.) 
• Run Model210_Openloop.mdl. If the carts do not seem to move much, increase 

the amplitude of the step. If the carts move too much, decrease the amplitude of 
the step. You may have to recompile. 

• Estimate the static gains as  
1, 2,

1 2
ss ssx x

K K
A A

= =  

 
where ssx is the steady state value of the cart position, and is the input amplitude. A
 
You should do this in Matlab, don't use the X-Y Graph. The variables x1, x2, and time 
should be in your workspace. 
 
You need to increase the value of the input amplitude until the first cart is moving 
about 2 cm or so Use the static gains associated with this input amplitude as your 
estimates of the static gain. 

 



 
 
Step 1c) Fitting the Estimated Frequency Response to the Measured Frequency Response  
 
We will be constructing the magnitude portion of the Bode plot and fitting this measured 
frequency response to the frequency response of the expected transfer function to 
determine the parameters we need. For each frequency 2 fω π=  we have as input 

( ) cos( )u t A tω=  where, for out systems, is measured in centimeters. After a transition 
period, the steady state output will be

A
( )x t1 1 cos(B t 1)ω θ= +  for the first cart and 

2 2( ) cos(x t B 2 )tω θ= +  for the second cart, where both 1B  and 2B are also measured in 
cm. Since we will be looking only at the magnitude portion of the Bode plot, we will 
ignore the phase angles 1θ  and 2θ .    
 
You will go through the following steps 
 
For frequencies  Hz 0.5,1,1.5...7.5f =
 

• Make sure both carts are free to move, and the third cart is fixed. 
• Modify Model210_Openloop.mdl so the input is a sinusoid. You may have to set 

the mode to Normal.  
• Set the frequency and amplitude of the sinusoid. Try a small amplitude to start, 

like 0.01 cm. Generally this amplitude should be as large as you can make it 
without the system hitting a limit. This amplitude will probably vary with each 
frequency. 

• Compile Model210_Openloop.mdl, if necessary. (Assume it is not necessary. 
The system will let you know if it is necessary.) 

• Connect Model210_Openloop.mdl to the ECP system. (The mode should be 
External.) 

• Run Model210_Openloop.mdl. If the carts do not seem to move much, increase 
the amplitude of the input sinusoid. If the carts move too much, decrease the 
amplitude of the input sinusoid.  

• Record the input frequency ( f ), the amplitude of the input ( A ), and the 
amplitude of the output ( 1B  and 2B ) when the system is in steady state. Modify 
the program get_Amp2.m to help record these amplitudes accurately. Be sure the 
plot from get_Amp2 shows the system in steady state. Be sure to look at the 
graph and understand what the code is doing before you use it!!! 

•  
  

Enter the values of f , , A 1B  and 2B   into the program process_data_2dof.m (you need 
to edit the file) 
 
At the Matlab prompt, type data = process_data_2dof; 



 
Run the program model_2dof.m. There are ten input arguments to this program: 
 

• data, the measured data as determined by process_data_2dof.m 
•  the estimated value of 2K   
• aω , the estimated frequency of the first resonance, when both carts are moving, in 

radians/sec 
• aζ , the estimated first damping ratio when both carts are moving. Assume 

0.1aζ = . 
• bω , the estimated frequency of the second resonance, when both carts are moving,  

in radians/sec 
• bζ , the estimated second damping ratio when both carts are moving. Assume 

0.1bζ = .  
• 1ω the estimated natural frequency of the first cart when it is the only cart moving 

(from the log decrement analysis) 
• 1ζ the estimated damping ratio of the first cart when it is the only cart moving 

(from the log decrement analysis) 
• 2ω the estimated natural frequency of the second cart when it is the only cart 

moving (from the log decrement analysis) 
• 2ζ the estimated damping ratio of the second cart when it is the only cart moving 

(from the log decrement analysis) 
 
 
The program model_2dof.m will produce the following: 
 

• A graph indicating the fit of the identified transfer function to the measured data 
for the first cart (You need to include the final graph of this fit in your memo.) 

• A graph indicating the fit of the identified transfer function to the measured data 
for the second cart (You need to include the final graph of this fit in your memo.) 

• The optimal estimates of all parameters (written at the top of the graphs) 
• A file state_model_2dof.mat in your directory. This file contains the A, B, C, 

and D matrices for the state variable model of the system. If you subsequently 
type load state_model_2dof you will load these matrices into your workspace. 

 
You need to be sure you have 4 points close to the resonant peaks of the transfer 
functions. This is particularly true if you have very small values of ζ (which 
correspond to very sharp peaks) At this point you probably should go back and add 
a few points near both the resonant peaks and nulls.  
 
 
 
 
 



Part B: Modeling the Torsional System 
 
You need to fill out the data sheet indicating the configuration on the last page of the 
lab and turn it in!  
 
Step 0: Set Up the System.  Both the first and second disks should move.  The third disk 
should be fixed in place. In addition: 
 

• Either the disks should have an equal moment of inertia, or the first disk should 
have a larger moment of inertia than the second disk.  

• The masses should be placed symmetrically on each disk, and the moment of 
inertia is generally given by 2mr    

 
You will be using this configuration throughout the remainder of the course so be sure 
you write down all of the information you need to duplicate this configuration. 
 
Step 1a)  Initial Estimates of  1ω , 1ζ  
From the equations of motion for the first disk we have 
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 If there is no applied force torque ( 0T = ) and the second disk is fixed in place ( 2 0θ = ), we have 
 

2 2
1 1 12 0s sζ ω ω+ + =  

 
Use the log decrement method to get our initial estimate of 1ω  and 1ζ . 
 
Since we cannot lock the first disk in place, we cannot estimate these parameters for the second disk. We 
will initially assume they are the same for both disks. 
 
For the log-decrement analysis you will go through the following steps: 
 

• Be sure only one disk is free to move 
• Reset the system using ECPDSPresetmdl.mdl. 
• Modify Model205_Openloop.mdl so the input has zero amplitude. 
• Compile Model205_Openloop.mdl if necessary. 
• Connect Model205_Openloop.mdl to the ECP system. (The mode should be 

External.) 
• Displace the first disk, and hold it. Don't displace the disk more than about 20 

degrees. 
• Start (play) Model205_Openloop.mdl and let the disk go. 
• Run the m-file log_dec.m. This should be in the same directory as 

Model205_Openloop.mdl and log_dec.fig. This routine assumes the position of 



the first disk is labeled theta1and the time is labeled time. (These are the defaults 
in Model205_Openloop.mdl.)  

 
You will need to include this log-decrement result in your memo. 
 
Step 1b) Estimating the Gains 1K  and 2K  
 
You will go through the following steps: 
 

• Be sure both disks are free to move 
• Reset the system using ECPDSPresetmdl.mdl. 
• Modify Model205_Openloop.mdl so the input is a step. Set the amplitude to 

something small, like 1 or 2 degrees (the ECP system expects the input in 
radians). 

• Compile Model205_Openloop.mdl 
• Connect Model205_Openloop.mdl to the ECP system. (The mode should be 

External.) 
• Run Model205_Openloop.mdl. If the disks do not seem to move much, increase 

the amplitude of the step. If the disks move too much (more than 25 degrees), 
decrease the amplitude of the step. You may have to recompile. 

• Estimate the static gains as  
1, 2,

1 2
ss sK K

A A
sθ θ

= =  

 
where ssθ is the steady state value of the disk position, and is the input amplitude. 
Be sure your units are consistent! Either both in radians or both in degrees! 

A

 
You should do this in Matlab, don't use the X-Y Graph. The variables theta1, theta2, 
and time should be in your workspace. 
 
You need to increase the value of the input amplitude until the first disk is moving 
about 20 degrees or so (this is not the steady state value, it needs to move though.) 
Use the static gains associated with this input amplitude as your estimates of the static 
gain. 

 
 
Step 1c) Fitting the Estimated Frequency Response to the Measured Frequency Response  
 
We will be constructing the magnitude portion of the Bode plot and fitting this measured 
frequency response to the frequency response of the expected transfer function to 
determine the parameters we need. For each frequency 2 fω π=  we have as input 

( ) cos( )u t A tω=  where, for out systems, is measured in radians (or degrees). After a 
transition period, the steady state output will be

A

1 1 cos(B t 1( ) )x t ω θ= +  for the first disk 
and 2 2( ) cox t B 2s( )tω θ= +  for the second disk, where both 1B  and 2B are also measured 



in cm. Since we will be looking only at the magnitude portion of the Bode plot, we will 
ignore the phase angles 1θ  and 2θ . 
 
Limit the motion of the torsional system to +/- 30 degrees. If it appears to be turning 
more than this stop the system and put in a smaller amplitude! 
 
You will go through the following steps 
 
For frequencies  Hz 0.5f = ,1,1.5...7.5
 

• Make sure both disks are free to move, and the third disk is fixed. 
• Modify Model205_Openloop.mdl so the input is a sinusoid. You may have to set 

the mode to Normal.  
• Set the frequency and amplitude of the sinusoid. Try a small amplitude to start, 

like 1 degree (the ECP expects the input in radians). Generally this amplitude 
should be as large as you can make it without the system hitting a limit or the 
system moving more than 25 degrees. This amplitude will probably vary with 
each frequency. 

• Compile Model205_Openloop.mdl, if necessary. (Assume it is not necessary. 
The system will let you know if it is necessary.) 

• Connect Model205_Openloop.mdl to the ECP system. (The mode should be 
External.) 

• Run Model205_Openloop.mdl. If the disks do not seem to move much, increase 
the amplitude of the input sinusoid. If the disks move too much, stop the system 
and decrease the amplitude of the input sinusoid.  

• Record the input frequency ( f ), the amplitude of the input ( A ), and the 
amplitude of the output ( 1B  and 2B ) when the system is in steady state. Modify 
the program get_Amp2.m to help record these amplitudes accurately. Be sure the 
plot from get_Amp2 shows the system in steady state. Be sure to look at the 
graph and understand what the code is doing before you use it!!! 

 
Enter the values of f , A , 1B  and 2B   into the program process_data_2dof.m (you need 
to edit the file). Note that you need to be consistent in your units for the amplitudes, 
either all in degrees (easy) or all in  radians (hard). 
 
At the Matlab prompt, type data = process_data_2dof; 
 
Run the program model_2dof.m. There are ten input arguments to this program: 
 

• data, the measured data as determined by process_data_2dof.m 
•  the estimated value of 2K   
• aω , the estimated frequency of the first resonance, when both disks are moving, 

in radians/sec 



• aζ , the estimated first damping ratio when both disks are moving. Assume 
0.1aζ = . 

• bω , the estimated frequency of the second resonance, when both disks are 
moving,  in radians/sec 

• bζ , the estimated second damping ratio when both disks are moving. Assume 
0.1bζ = .  

• 1ω the estimated natural frequency of the first disk when it is the only disk moving 
(from the log decrement analysis) 

• 1ζ the estimated damping ratio of the first disk when it is the only disk moving 
(from the log decrement analysis) 

• 2ω the estimated natural frequency of the second disk when it is the only disk 
moving (assume its the same as for the first disk) 

• 2ζ the estimated damping ratio of the second disk when it is the only disk moving 
(assume its the same as for the first disk) 

 
 
The program model_2dof.m will produce the following: 
 

• A graph indicating the fit of the identified transfer function to the measured data 
for the first disk (You need to include the final graph of this fit in your memo.) 

• A graph indicating the fit of the identified transfer function to the measured data 
for the second disk (You need to include the final graph of this fit in your memo.) 

• The optimal estimates of all parameters (written at the top of the graphs) 
• A file state_model_2dof.mat in your directory. This file contains the A, B, C, 

and D matrices for the state variable model of the system. If you subsequently 
type load state_model_2dof you will load these matrices into your workspace. 

 
You need to be sure you have 4 points close to the resonant peaks of the transfer 
functions. This is particularly true if you have very small values of ζ (which 
correspond to very sharp peaks) At this point you probably should go back and add 
a few points near both the resonant peaks and nulls.  
 
Your memo should include a description of each system (so you can set them up again),  
a table comparing the estimated values of the static gains, the natural frequencies, and 
the damping ratios using the two different methods (time domain and optimized frequency 
domain), and a brief comparison of the values. The damping ratios are often quite 
different, so that's OK. The other values should be close. You should include as 
attachments 7 graphs (3  log-decrement and 4  frequency response graphs), each with a 
figure number and caption. You should also include the data used for estimating the 
static gains. 



Name _________________________________________________________ 
 
 
 
 
2 dof rectilinear systems (model 210) 
 
Damper:                              Yes   No 
Left Spring:                            stiff/light/none     Spring Number =  
Number of Large Masse on First Cart:     2  3  4 
Number of Small Masses on First Cart:    1  2  3  4 
Middle Spring :                          stiff/light            Spring Number =      
Number of Large Masse on Second Cart:     2  3  4 
Number of Small Masses on Second Cart:    1  2  3  4 
Right Spring :                          stiff/light            Spring Number =      
 
state_model_2dof.mat  is now named : 
 
 
 
 
 
2 dof torsional systems (model 205) 
  
Number of Masses on First Disk:     2   4 
Each mass  
a) is as far in (towards the center) as it can go 
b) is as far out (away from the center)  as it can go 
c) is aligned so the outer edge is on the _________ ring from the outside 
 
Number of Masses on Second Disk:     2   4 
Each mass  
a) is as far in (towards the center) as it can go 
b) is as far out (away from the center)  as it can go 
c) is aligned so the outer edge is on the _________ ring from the outside 
 
 
 
 
 


