
ECE-520: Discrete-Time Control Systems 
Homework 3 

 
Due: Monday  January 4 in class  
Exam 1, Thursday January 7 

 
1)  For each of the following transfer functions, determine if the system is asymptotically 
stable, and if so, the estimated 2% settling time for the system. Assume the sampling 
interval is  seconds. 0.1T =

  

a) 2
( 0.1) . )

(
( 0 2

)H z
z z

z =
+

− +
     d) 2

1( )
0.5

H z
z z+

=
+

 

b) 1( )
( 2)( 0.5

H z
z z

=
− + )

        e) 2
1

0.5
(

.
)

0 2
zH z

z z+ +
−

=   

c) 1( )
( 0.1)( 0.5)

H z
z z

=
− −

      f) 2
1( )

5
H z

z z+ +
=   

 
Scambled Answers: 0.497, 0.58 , 1.15, 0.24, two unstable systems 
  
2) For the following system, assuming the closed loop systems are stable, determine the 
prefilter gain pfG  that will result in zero steady state error for a unit step input. Are any 
of these systems type one systems? 
 
 

 
 
a) 2

0.2 , ( ) , ( )
10.1 0.2

( )p c
zG z H z

z
G z

z z
= =

−+ +
1=  

b) 2
0.2 , ( ) , ( )

0.1 0.
1( )

2p cG z zz
z

G H
zz

= =
+ +

1=  

c) 2
1, ( ) , ( )

0.2 0.20.4 0
1 0.2( )

.04p cG z H z
z zz z

G z = =
+ ++ +

=  

 
Answers:  7.5, 9.47, one is type one (so the prefilter has value 1) 
 
 
 

 1



3)  Consider the continuous-time plant with transfer function  
1( )

( 1)( 2p s
s

G
s

=
)+ +

 

We want to determine the discrete-time equivalent to this plant, , by assuming a 
zero order hold is placed before the continuous-time plant to convert the discrete-time 
control signal to a continuous time control signal.  

( )pG z

  
a) Show that if we assume a sampling interval of T , the equivalent discrete-time plant is 
 

2 2

2
(0.5 0.5e ) (0.5 0.5 )( )

( )(
 

)

T T T T

p T T
z e e e eG z

z e z e

− − − − −

− −
− + + − +

=
− −

3T
 

Note that we have poles were we expect them to be, but we have introduced a zero in 
going from the continuous time system to the discrete-time system. 
 
b) The Matlab script continuous_discrete_ft.m shows how to use Matlab to convert a 
discrete-time plant to a continuous-time plant, just as we have done by hand here. It also 
shows how to simulate and plot the two responses and the effect of a zero order hold on 
our system. Run this code and turn in your plot. 

 
 
c) Modify the code to for three different continuous-time transfer functions and run the 
simulations, and turn in your plots. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 2



4) Prelab:  In this (and the next) lab you will be using Matlab’s sisotool to simulate and 
implement discrete-time PI and PID controllers for your one degree of freedom systems. 
This prelab presents a brief review of Matlab’s sisotool (the R2008 version) and some of 
the things you will need to know to apply this to our problem. 
 
The file DT_PID.mdl is a Simulink model that implements a discrete-time PID 
controller. It is somewhat unusual in that the plant is represented in state-variable form, 
but this is the usual form we will using in this class. The Simulink model looks like the 
following:  
 

 
The file DT_PID_driver.m is the Matlab file that runs this code. We will be utilizing 
Matlab’s sisotool for determining the pole placement and the values of the gains. 
 
Before we go on, we need to remember the following two things about discrete-time 
systems: 
 

• For stability, all poles of the system must be within the unit circle. However, 
zeros can be outside of the unit circle. 

 
• The closer to the origin your dominant poles are, the faster your system will 

respond. However, the control effort will generally be larger. 
 
 
 
 
 
 
 
 

 3



The basic transfer function form of the components of a discrete-time PID controller are 
as follows: 
 
Proportional  (P) term :  ( ) ( )pC z K E z=

Integral (I)  term: 1( )
1 1

i iK KC z
z z−= =

− −
z  

Derivative (D) term : 1 ( 1)( ) (1 ) d
d

K zC z K z
z

− −
= − =  

 
PI Controller: To construct a PI controller, we add the P and I controllers together to get 
the overall transfer function: 
 

( )
( )

1 1
p ii

p

K K z KK zC z K
z z

p+ −
= + =

− −
 

 
In sisotool this will be represented as  

2( ) (( )
( 1) ( 1)

K z az K z aC z
z z z

)+ +
= =

− −
 

 
In order to get the coefficients we need out of the sisotool format we equate coefficients 
to get:  

,p i pK Ka K K K= − = −  
PID Controller: To construct a PID controller, we add the P, I,  and D controllers 
together to get the overall transfer function: 
 

2 2 2( 1) ( 1) ( ) ( 2 )( 1)( )
1 ( 1) ( 1)

p i d p i d p di d
p

K z z K z K z K K K z K K z KK z K zC z K
z z z z z z

− + − − + + + − − +−
= + + = =

− − −
d

 
 
In sisotool this will be represented as  

2( )( )
( 1)

K z az bC z
z z
+ +

=
−

 

 
In order to get the coefficients we need out of the sisotool format we equate coefficients 
to get:  
 

, 2 ,d p d i p dK Kb K Ka K K K K K= = − − = − −  
 

For the PID controller, we can have either two complex conjugate zeros or two real zeros. 
 
 

 
 

 4



 Sisotool (Brief) Example 
 
A) Run the Matlab program DT_PID_driver.m. This program is set up to read the data 
file bobs_1dof_205.mat, which is a continuous time state variable model for a one degree 
of freedom torsional system, and implement a P controller with gain 0.0116. It will put 
the value of the transfer function for your system, , in your workspace.  ( )pG z
 

In sisotool, you will see the transfer functions form of the controllers. To determine 
the parameters , , and  you need to equate powers of s of the transfer 
functions with the forms above. It is  easies t if you use the zero/pole/gain format for 
the compensators. To do this click on  Edit → SISO Tool Preferences → Options 
and click on zero/pole/gain. 

pk ik dk

 
B) Read the Appendix to review sisotool 
 
C) Entering a Compensator (Controller). We will implement a PI controller here 

 
• Click on Designs, then Edit Compensators. Right click in the Dynamics 

window to enter real poles and zeros. You will be able to changes these values 
very easily later. Since we want a PI controller, we need a pole to be a 1 and we 
need to be able to change the value of the zero. For now assume the zero is at -1. 

• Look at the form of C to be sure it's what you intended, and then look at the root 
locus with the compensator. 

• You can again see how the step response changes with the compensator by 
moving the locations of the zero (grab the pink dot and slide it) and moving the 
gain of the system (grab the squares and drag them). Remember we need all poles 
and zeros to be inside the unit circle for stability! 

• Move the pole an zero around until the zero is approximately -0.295 and the gain 
is approximately 0.0563. 

 
D) Printing/Saving the Figures: 
 
To save a figure sisotool has created, click File → Print to Figure. Print out this figure 
and attach it to the homework. 
 
E) Back to Matlab.  
 

• Determine the correct values of a and K 
• Enter these in the Matlab code DT_PID_driver.m 
• Modify DT_PID_driver.m to compute the proportional and integral gains 
• Run DT_PID_driver.m and print out the picture and attach it to this homework. 

It should look like Figure 1. 
 
 
 

 5



F) Now your one degree of freedom system 
 
Choose one of your one degree of freedom systems (if there are two partners, each should 
choose a different system) and use a sampling interval of 0.1 seconds. For torsional 
(model 205) systems, assume a 15 degree step, for rectilinear (model 210) systems 
assume a 1 cm step. Use sisotool to determine a PI controller so you system has a settling 
time less than 1.5 seconds and a percent overshoot less than 25%. The control effort must 
also be within the allowed bounds, though this may be different than that output by 
sisotool since sisotool always assumes a step of value 1. 
 

• Print out the root locus plot 
• Determine the step response using sisotool and print out the graph 
• Determine the step response using DT_PID_driver.m and print out the graph 
• Use sisotool to determine a PID controller so you system has a settling time less 

than 1.75 seconds and a percent overshoot less than 25%. The control effort must 
also be within the allowed bounds.  

• Print out the root locus plot 
• Determine the step response using sisotool and print out the graph 
• Determine the step response using DT_PID_driver.m and print out the graph 

 

 
 

Figure 1: Matlab/Simulink results for PI controller. 

 6



 
Appendix: Review of  sisotool 

 
Getting Started 
 

• Enter the transfer function for the plant, G(s), in your workspace. 
• Type sisotool in the command window 
• Click  close when the help window comes up 
• Click on  View, then Design Plots Configuration and turn off all plots except the 

Root Locus plot 
 
Loading the Transfer Function 
 

• Click on file → import. 
• We will usually be assigning   to block G (the plant), so type your transfer 

function name next to G and then enter. You must hit enter or nothing will 
happen (you can also use the Browse function). 

( )pG z

• Once you hit enter, you should be able to click on the OK at the bottom of the 
window. The window will then vanish. 

• Once the transfer function has been entered, the root locus is displayed. Make 
sure the poles and zeros of your plant are where you think they should be. 

 
Generating the Step Response 
 

• Click on Analysis →  Response to Step Command 
• You will probably have two curves on your step response plot. To just get the 

output, type Analysis → Other Loop Responses. If  you only want the output, 
then only r to y is checked, and then click OK. However, sometimes you will also 
want the r to u output, since it shows the control effort for P, I, and PI controllers. 

• You can move the location of the pole in the root locus plot by putting the cursor 
over the pink button and  holding the left button down as you move the pole 
locations. You should note that the step response changes as the pole locations 
change. 

• The bottom of the root locus window will show you the closed loop poles 
corresponding to the cursor location. However, if you need all of the closed loop 
poles you have to look at all of the branches. 

 
 
Entering a Compensator (Controller) 
 

• Type Designs →Edit Compensator 
• Right click in the Dynamics window to enter real poles and zeros. You will be 

able to changes these values very easily later. 

 7



 8

• You can either edit the pole/zero locations in this window, or by grabbing the 
poles and zeros in the root locus plot and moving them. However, sometimes you 
just have to go back to this window. 

• Look at the form of C to be sure it's what you intended, and then look at the root 
locus with the compensator. 

• You can again see how the step response changes with the compensator by 
moving the locations of the poles (grab the pink dot and slide it). 

• You can also change the location of the pole and zeros of the compensator by 
grabbing them and sliding them. Be careful not to change the poles and zeros of 
the plant though! 

 
Adding Constraints 

• Right Click on the Root  Locus plot, and choose Design Constraints then either 
New to add new constraints, or  Edit to edit existing constraints. 

• At this point you have a choice of various types of constraints. 
 
 
Printing/Saving the Figures: 
 
To save a figure sisotool has created, click File → Print to Figure 
 
 
 
Odds and Ends : 
 

You may want to fix the axes. To do this, 
 

• Right click on the Root Locus Plot 
• Choose Properties 
• Choose Limits 
• Set the limits and turn the Auto Scale off 

 
You may also want to put on a grid, as another method of checking your answers. To 
do this, right click on the Root Locus plot,  then choose Grid 

 
It is easiest if you use the zero/pole/gain format for the compensators. To do this 
click on  Edit → SISO Tool Preferences → Options and click on zero/pole/gain. 

 


