
ECE-520 Lab 3 
System Identification For One Degree of Freedom Systems Using Matlab’s System 
Identification Toolbox 
 
Overview 
 
In this lab you will be utilizing Matlab’s system identification toolbox to try and determine a 
model for both of your one degree of freedom systems (torsional and rectilinear) You will 
compare these models with a your continuous time model that after it has been discretized 
assuming a zero order hold. You will be storing these models for later comparison. In Lab 4 we 
will utilize the system identification toolbox to determine models for the two degree of freedom 
systems you have already modeled. Feel free to explore the System Identification Toolbox and 
tell me any cool stuff you found out. The following is just a very basic introduction. 
 
Background 
  
There are two basic issues we must deal with before we get into how to use the system 
identification toolbox. The first issue is the difference between the form of the state equations we 
will get out from the system identification toolbox and the form of the equations we want to have. 
The second issue is the types of inputs we need in order for the system identification toolbox to 
work correctly. 
 
The ECP systems have an extra delay in the system, which we must account for. Since we want 
access to the states (for state variable feedback) we want our state model to be of the form 
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The system identification program will be told that we have a delay, so it will not care about the 
last state (it just passes though). Hence we will only give the system identification program two 
outputs (for the first two states) that we need to determine the and the . Hence if we can 
find the two state model 
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we will have all that we need. 
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However the system identification program is not likely to give us directly what we want. The 
system identification toolbox will give us something in the form 
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The problem here is clearly the C matrix, which we want to be diagonal so we can access the 
states. The obvious solution to this problem is to rewrite the state equations in another form, 
using a different set of basis vectors. Specifically, we have 
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Next we must deal with the types of inputs the system identification toolbox expects. The best way 
to think about this is to think about how we used sinusoids of different frequency to construct the 
Bode plot of the system in the first two labs. We needed to include sinusoids with enough 
different frequencies that we could accurately construct the Bode plot. If we had just used 
sinusoids at two different frequencies we would not have produced a very good Bode plot. The 
basic idea here is then that whatever input we put into the system must have sufficient ``spectral 
content’’ that we could construct an accurate Bode plot if we have output at each of the 
frequencies that makes up the input. If you have taken ECE-300, this means we want the Fourier 
transform of the input to have spectral content up to the highest frequency we expect to see in 
our system. In controls we say we need an input with persistent excitation.   
 
Finally, system identification is something of an art, and it takes practice to get good at it. 
 
Part A: Tutorial Using the One degree of Freedom Rectilinear System 
 
In the following steps, you should try and follow along and do the same things with your systems 
I did with my system. After this brief tutorial, you will be set free to explore on your own. 
 
Be sure to load the correct controller personality file for the ECP system (and reset the system 
every time before you run it) !!! 
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Step 1: Set Up the System.  Set up the system the way you did in Lab 1. Be sure the Matlab 
model file for that system is in your current directory. 
 
Step 2:  Get the files. Copy the contents of the Basic Files folder into a folder for Lab 3. Compile 
ECPRDPRest and run it. 
 
Step 3: Looking at the guts Start Simulink and open the file Model210_DT_openloop.mdl.It 
should look like the following: 

 
If we look inside the ECP Model 210 Discrete-Time block, we see the following: 

 
The top two state coming out of the system will be ``real states’’, while the bottom state will be a 
delayed version of the input . If we look inside the Manipulate Data block, we see the 
following: 

( 1u k − )
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The only part you have to concern yourself with is the final block, which is a mask to pick off 
the states we want. Just after the get_all_states block the state variables are in the vector 

1 1 2 2 3 3 1 1

T
x x x x x x θ θ⎡⎣ ⎤⎦ The vector get_desired_states in the program 

DT_openloop_driver.m is currently set so the output of this block will only be the position and 
velocity of the first cart. 
 
If we look inside the ECPDSP Driver block, we get to set a few parameters, as shown below: 
 

 
 
 
The variable Ts is the sample time, and it will be set in DT_openloop_driver.m.  If we look 
inside the step command, 
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In the Block Parameters for the Step command we  again see the sample time set at Ts and the 
final value set to Amp, which is also set initially by DT_openloop_driver.m. However, you are 
very likely to want to change the value of Amp as you go on. This can be done in Matlab’s  
workspace.  
 
If we look under simulation parameters, we should see the following 
 

 
 
 
Ts and Tf are set by DT_openloop_driver.m, though you may want to change the final time in 
Matlab’s workspace. I would suggest a final time (Tf) of between 3 and 20 seconds or so, it 
really depends on your input to the system. 
 
Step 4: A Step Response Set the amplitude to something you think will work to move the system 
but not hit a stop and be sure the final time is sufficiently long. Do this in the script 
DT_openloop_driver.m, then run the script. Then compile and run 
Model210_DT_openloop.mdl. 
 
Step 5: Save your data! We need to save our data so we can use it later. Since the variables time, 
u, and y are in Matlab’s workspace, lets put them into a convenient file. I’ll name my file 
bobstepR,  so at Matlab’s prompt I will type 
 
save bobstepR time u y 
 
When I want to get the time, input, and output vectors that go with this particular step input, I 
just type 
 
load bobstepR 
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and the time, u, and y variables will be available in the workspace. They will overwrite any other 
values of these variables that are already in the workspace, so be careful about this. 
 
Step 6: Starting up Matlab’s System Identification Toolbox At the Matlab prompt, type 
 
ident 
 
and you should get the following winidow: 
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Step 7: Importing Data into the Toolbox In order to use the toolbox, we need to give it some 
data. Under Import Data, select the option Time Domain Data and your should get the 
following window. I have filled in the data for my input. 
 

 

Note we only give 
the first two outputs 
(states) 

Clever name so we can remember what 
the input was. DO NOT use the same 
name you saved the variable in, i.e., 
bobstepR 

We started the simulation 
at time 0 

We need to explicitly 
indicate the sampling 
time 

Click on Import 
to load the data 
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Once you import the data, you should see something like the following: 
 

 
 
At this point we are ready to use the data to make our first discrete-time model. Since the only 
data that we have is from bobstep, that becomes the Working Data. To change the Working 
Data, we just drag a data set over to Working Data, as you will see.  
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Step 8: Selecting the Model Now we need to select the model type. We want a state variable 
model, and we know that there will be an extra delay in out system. Under  Estimate, select 
Parametric Models. You should get the following window, where I have again filled in the 
required fields. 
 
 

 

 We want a state 
space model 2 states, with an 

extra delay 

This method 
works better Clever name 

Our system started at rest. 
Be sure to reset the system 
before each use so this is 
true! 

Whatever you put here 
doesn’t really matter 

Our model has no K in it 

 
If we click on Iteration Options, we see we have some choices. Most of the time the defaults 
values will work fine, but sometimes you may want to change them. 
 

 

You might want to try 
something like 200 
here 

You might want to try 
and reduce this to 0.2 
or so 
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Step 9: Create the Model  To make the model, click on Estimate.  You should then get a model, 
as shown below: 
 
 

 

Our model of the 
system, based on 
the input (u) and 
output(y) data. 

This is the 
data we will 
compare out 
model to 

 
We should now look at how closely the model matches our input. To do this, be sure Validation 
Data has the same name as the input data set. The click on Model output. The following is what 
I got (for a 3 second sample): 
 

           
 
To go from one channel to the other select Channel and then choose whichever one you want. 
The black in the above figures show the real signal (the y values we imported) and the blue 
represents the output of our model. 
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Step 10: Save the Session! It may come as a shock to some of you, but the ECP systems have a 
nasty habit of locking up the computer. In order to save what you have done, you should save the 
session. Select File and the Save Session As… You should save your session often to avoid 
loosing your work. 
 
Step 11: Comparing Models. At this point you are undoubtedly wondering how well does the 
model you just constructed compared to a sampled version of the continuous time system you 
made in Lab 1. In order to do this we first need to get our discrete-time model into Matlab’s 
workspace. To do this, we just drag it to the To_Workspace box. 
 

 
 
Now our workspace has access to the discrete-time model. Next we need to load the data we 
used to create this model. This is important since it gives us the system input and time vector. To 
do this, type 
 
 
load bobstepR 
 
(Note: At this point we don’r really need to do this, but will will later on) 
 
Next we use the program compare_sys_id.m. The arguments to this file are the input (u), the 
output (y), the time (t), the disdrete-time model file (model), and the length of time you want to 
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plot  the simulation for (Tend). In addition, you need to edit the file so it loads the correct 
continuous time model file from Lab 1.  Then, for my system, I would type 
 
compare_sys_id(u,y,time,bobstep,3); 
 
and I got the following output (yours will most likely be different): 
 

 
Here we see the response of the model created using the system identification toolbox( sys id), 
the response of the model made discretizing your continuous time model (c2d) , and the response 
of the real system (Real).  The color schemes looked good to me, but feel fee to modify them. If 
you do change color schemes or line types, be sure they print well in black and white (unless you 
print your memos in color!) 
 
Step 12: A New Data Sets Now we want to try and make a model of our system using a different 
input. Let’s assume this time I use an input of a chirp. This is a signal that starts with a low 
frequency and ends with a high frequency (it sounds like a bird’s chirp—hence its name). 
 
First you need to disconnect the step from the input in Model210_DT_openloop.mdl and insert 
a chirp signal. You will notice that there is no way to control the amplitude of the chirp signal, so 
you will need to insert a gain to be sure to scale the signal to a small value. It is a good idea to 
start with a very small value in this gain (0.001) and then increase it until your system moves a 
reasonable amount. Your model file should look like the following: 
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The parameters I used for my system is shown below, with a gain of 0.01. You should note that 
we are using very low frequencies since our system cannot really respond very quickly. 
 

 
 
 
You should set the gain very low to begin with, compile the system and run it. Once you have 
found a good gain and your system moves a reasonable amount, save your data. I used 
 
save bobchirpR u time y 
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Step 13: Load Newe Data  into the System Identification Toolbox.  Now we load this data set into 
the toolbox.  

 
 

 
And it shows up in the main window 
 

New data set  
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Step 14: Creating a Model from the New Data Set. Now we need to drag the new data to the 
Working Data area and the Validation Data area, as shown below: 
 

 
 
Which results in  
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Step 14: A New Model.Next we construct a new state space model with this data set, which will 
be put into the model part of the window, as shown below: 
 
 

 
 
The comparison between the model and the input data (used to construct the model) is then 
shown below (for my system) 
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Step 15: We Finally Stop Cheating (Sort of).  At this point you should be told that it is generally 
considered to be quite bad in system identification, and in many other fields,  to use one data set 
to generate the model, and then try an validate the model by comparing it to the data used to 
generate it. This is certainly a good first step, since if the model doesn’t match the data used to 
generate it, the model is not likely to work well for other inputs. Hence, in this case we will 
utilize the bobstep data set as a validation data set. To do this, we drag bobstep to the Validation 
Data box, and then look at the model output, as shown below: 

 
 

At this point, we can see how our newest model, bobchirp, matches the measured output when 
the input is a step. As these figures show, there is an offset between the model output and the 
measured output for this input. This is fairly common for these systems, and there are some ways 
we can try to fix this, which we will mention later in this lab. 
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If we want to compare how well the models from both bobchirp and bobstep compare when the 
input is a unit step we make sure they are both highlighted, as shown  below: 
 

 

Click on a 
model to 
highlight it 

 
 
The outputs for the different models and the true output are shown in different colors, as shown 
below.  
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Step 16: Comparing with the Discretized Continuous Time Model (Again).   In order to do this 
we again  need to get  our discrete-time model into Matlab’s workspace. To do this, we just drag 
it to the To_Workspace box. 
 

 
 
 
Now our workspace has access to the discrete-time model. Next we need to load the data we 
want to test our model against. This is important since it gives us the system input and time 
vector. If we are going to test against a step input, type 
 
load bobstepR 
 
Next we again use the program compare_sys_id.m. The arguments to this file are the input (u), 
the output (y), the time (t), the disdrete-time model file (model), and the length of time you want 
to plot the simulation for (Tend). In addition, you need to load the correct continuous time model 
file from Lab 1.  For my system, I would type 
 
compare_sys_id(u,y,time,bobchirp,3); 
 
and I got the output shown on the following page. 
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Here we see the response of the model created using the system identification toolbox( sys id), 
the response of the model made discretizing your continuous time model (c2d) , and the response 
of the real system (Real).   
 
Step 17: Merging Data Files.Sometimes we want to combine more than one data file to try and 
make a model. To do this, under Preprocess select Merge Experiments. A new window will 
pop up as follows: 

 
 In order to merge the experiments, you need to drag them over and drop them where indicated, 
and then select Insert, as shown on the next page 
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The names of 
the data sets 
to be merged 

Select Insert 
to merge the 
data sets 

 21



 

The new 
data set 
goes here 

 
 
You can now use the merged data set to construct a new model, and the response of the new 
model to any of the other data sets. Note, however, that sometimes merging files does not 
produce a better model than the two individual files did. 
 
Part B: Some Possible Inputs/Guidlines 
 
Below I have listed some of the things that I have tried. You do not need to try these, but they 
may be a good starting point. I also found for my systems that it was more difficult to get a good 
model for the rectilinear system than for the torsional system. 
 
Generally Good Inputs are: Pulses, Chirp, Bandlimited White Noise, Multiple Sine Waves 
 
Combinations of these are also good (use a summation block to add the inputs). Keep the 
frequencies at a maximum of 4-5 Hz, usually lower. The power in the white noise sources should 
be very small (start with 0.00001 and then increase it) I found that using pulses with a period of 5 
seconds and a duty cycle of 50% in parallel with another input often worked fairly well. For 
many of the sources, such as noise or chirp sources, the system identification toolbox tends to 
produce a better model the more data it has to work with (i.e., the longer the system is allowed to 
run). 
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Part C: For You to Do 
 
For each of your systems, you need to try and find three treasonably good models, in addition to 
one model using only a step input to create the model. (A total of four models.) For each of these 
models you need to include the following: 
 
1) A description of the input source (or sources if you merged data). This needs to be sufficiently 
detailed that I, or future students, could exactly duplicate your input. 
  
2) The corresponding name of the state variable model. What I mean is that at the end of the 
program compare_sys_id.m a state variable model is stored in the file 
sys_id_1dof_model210.mat.This file needs to be renamed and you need to tell me the name and 
relate it to the inputs used to create the model (from requirement 1 above). Be sure to use a 
naming convention so you can tell the torsional models from the rectilinear models! In lab 5 you 
will be comparing the different models when we try and use state variable feedback to control 
the system, and you need to know which file goes with which source. 
 
3) A plot comparing the response of your model created by the system identification toolbox and 
the response of the discretized version of your continuous time model, for a step input. This is 
the output of the compare_sys_id.m program.  
 
4) The name of the discretized state variable model for both the rectilinear and torisional 
systems. Again, at the end of the program compare_sys_id.m the discretized state variable 
model is stored in the file c2d_1dof_model210.mat .You need to change the name, or at least be 
sure the model file for the 205 system is named differently. 
 
The body of your memo should contain the information from parts 1,2, and 4 above. You should 
try and see if you can put the information in a table. You should also indicate which of your 
input sources, other than the step, seemed to work best for creating a model that matched a step 
input. 
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