ECE-520 Lab 3
System Identification For One Degree of Freedom Systems Using Matlab’s System
Identification Toolbox

Overview

In this lab you will be utilizing Matlab’s system identification toolbox to try and determine a
model for both of your one degree of freedom systems (torsional and rectilinear) You will
compare these models with a your continuous time model that after it has been discretized
assuming a zero order hold. You will be storing these models for later comparison. In Lab 4 we
will utilize the system identification toolbox to determine models for the two degree of freedom
systems you have already modeled. Feel free to explore the System Identification Toolbox and
tell me any cool stuff you found out. The following is just a very basic introduction.

Background

There are two basic issues we must deal with before we get into how to use the system
identification toolbox. The first issue is the difference between the form of the state equations we
will get out from the system identification toolbox and the form of the equations we want to have.
The second issue is the types of inputs we need in order for the system identification toolbox to
work correctly.

The ECP systems have an extra delay in the system, which we must account for. Since we want
access to the states (for state variable feedback) we want our state model to be of the form

ql(k +1) gll ng hl ql(k) O

(K41 [=] 9y 9 N || G(k) [+]Oju(k)
u(k) 0 0 Oljuk-2 1
10 o] g
y(k)=10 1 0} qa,(k)
0 0 1|juk=-2

The system identification program will be told that we have a delay, so it will not care about the
last state (it just passes though). Hence we will only give the system identification program two
outputs (for the first two states) that we need to determine the g; and the h;. Hence if we can

{ql(kﬂ)}{gn glzwl(k)}{hl}u(k)
d,(k+1) Un 9 || 9, (K) h,

11 0 au(k)
y{o J 0, (k)

find the two state model

we will have all that we need.

However the system identification program is not likely to give us directly what we want. The
system identification toolbox will give us something in the form

|:p1(k+1):|:|:g:11 g12:|_pl(k):|+ @ u(k)
p,(k+1) Oa 9o || P2(K) h,
y:|:611 12_|:p1(k):|
621 22 | P, (k)
The problem here is clearly the C matrix, which we want to be diagonal so we can access the

states. The obvious solution to this problem is to rewrite the state equations in another form,
using a different set of basis vectors. Specifically, we have

(e

p(k+1) = Gp(k) + Hu(k)
y(k) =Cp(k)

Now let p(k) = Pq(k), or q(k) = P™"p(k)so we have

q(k +1) = P p(k +1) = P'GPq(k) + P*Hu(k)

y(k) = CPq(k)
How do we choose P ? We want C to be a diagonal matrix, so P =C™, and then G = P’GP and
H=P'H.

Next we must deal with the types of inputs the system identification toolbox expects. The best way
to think about this is to think about how we used sinusoids of different frequency to construct the
Bode plot of the system in the first two labs. We needed to include sinusoids with enough
different frequencies that we could accurately construct the Bode plot. If we had just used
sinusoids at two different frequencies we would not have produced a very good Bode plot. The
basic idea here is then that whatever input we put into the system must have sufficient *spectral
content’” that we could construct an accurate Bode plot if we have output at each of the
frequencies that makes up the input. If you have taken ECE-300, this means we want the Fourier
transform of the input to have spectral content up to the highest frequency we expect to see in
our system. In controls we say we need an input with_persistent excitation.

Finally, system identification is something of an art, and it takes practice to get good at it.

Part A: Tutorial Using the One degree of Freedom Rectilinear System

In the following steps, you should try and follow along and do the same things with your systems
I did with my system. After this brief tutorial, you will be set free to explore on your own.

Be sure to load the correct controller personality file for the ECP system (and reset the system
every time before you run it) 1!

Step 1: Set Up the System. Set up the system the way you did in Lab 1. Be sure the Matlab
model file for that system is in your current directory.

Step 2: Get the files. Copy the contents of the Basic Files folder into a folder for Lab 3. Compile
ECPRDPRest and run it.

Step 3: Looking at the guts Start Simulink and open the file Model210_DT_openloop.mdl.It
should look like the following:

— u

Ta Matspaced

r o u

Step ECF tadel 210 Tao Wotsp aced

Discrete-Time

12:24 ——- time

Digital Clockd To Waokspaces

If we look inside the ECP Model 210 Discrete-Time block, we see the following:

._- 3 -
! K v ECFDSF Driver
u
scale Saturation upta
4 EncaADC Channals)
and 2 Dacs
o Manipulate Data states
Lac2 Yalue ECFDSF Driver
1
J- =
L

Unit Crelay

The top two state coming out of the system will be “real states’’, while the bottom state will be a
delayed version of the input u(k —1) . If we look inside the Manipulate Data block, we see the

following:

R

get positions scaled
| duidt
- Derivative \— b b

In

Out1

get all get

K- states desirad
states

get angles scale?

] duidt

Derivativez

The only part you have to concern yourself with is the final block, which is a mask to pick off
the states we want. Just after the get_all_states block the state variables are in the vector

[xl X\ X, X X X 6 5’1]T The vector get_desired_states in the program
DT_openloop_driver.m is currently set so the output of this block will only be the position and
velocity of the first cart.

If we look inside the ECPDSP Driver block, we get to set a few parameters, as shown below:

Block Parameters: ECPDSP Driver |

|'5ubsystem [mask]

— Parameters
Baze /0 Address

"D E 00

Sample Time [Sec)
ITS
Timeout Perind (500~ 2000)
|500

v Hardware Access

0k, I Cancel | Help | Spply |

The variable Ts is the sample time, and it will be set in DT_openloop_driver.m. If we look
inside the step command,

Block Parameters: Step |

—Step

Output a step.

— Parameters
Step time:

b

Iritial walue:
|0

Final walue:
I.ﬁ.mp

Sample time:
ITS

[¥ Interpret vector parameters az 1-D

[¥ Enable zeme crossing detection

(] 4 I Cancel Help Lpply

In the Block Parameters for the Step command we again see the sample time set at Ts and the
final value set to Amp, which is also set initially by DT_openloop_driver.m. However, you are
very likely to want to change the value of Amp as you go on. This can be done in Matlab’s
workspace.

If we look under simulation parameters, we should see the following

J Simulation Parameters: Model210_D =10 x|

Wnrkspacelx’[ll Diagnnsticsl .-’-'-.dvanu:edl Heal-TimeWnrksthl

Salver

Sirnulatian trme
Start time: I 0.0 Stop time: I Tf

Solver optiohz
Type: IFiHed-step j Idiscrete [Mo continuous states] j

Fised step size: I Ts b ode:; I.-’-'-.utu:u j

Output optionz

Fiefine output j Fefine factar I 1

k. | Eancell Help | F¥um 1

Tsand Tf are set by DT_openloop_driver.m, though you may want to change the final time in
Matlab’s workspace. | would suggest a final time (Tf) of between 3 and 20 seconds or so, it
really depends on your input to the system.

Step 4: A Step Response Set the amplitude to something you think will work to move the system
but not hit a stop and be sure the final time is sufficiently long. Do this in the script
DT_openloop_driver.m, then run the script. Then compile and run
Model210_DT_openloop.mdl.

Step 5: Save your data! We need to save our data so we can use it later. Since the variables time,
u, and y are in Matlab’s workspace, lets put them into a convenient file. I’ll name my file
bobstepR, so at Matlab’s prompt I will type

save bobstepR time u 'y

When | want to get the time, input, and output vectors that go with this particular step input, I
just type

load bobstepR

and the time, u, and y variables will be available in the workspace. They will overwrite any other
values of these variables that are already in the workspace, so be careful about this.

Step 6: Starting up Matlab’s System Identification Toolbox At the Matlab prompt, type
ident

and you should get the following winidow:

} ident: Untitled =10 x|
File Options Window Help
I Irmport data j I [mpart models j
", O perationz ",
I <-- Preprocess j
==
‘Wiorking Data
I E stimate --» j
Data Yiews Model Yiews
Ta Ta
[T Time plat Workspace || LTI Mewer [[T bodel outpot [T | Transient rezp
[T| Data spectra ™| todel resids ™| Erequency resp
™| Frequency function l [T Zemos and poles
Exit Trazh \alidation Data ™| Moize spectium
The character iz not a valid hotkey

Step 7: Importing Data into the Toolbox In order to use the toolbox, we need to give it some
data. Under Import Data, select the option Time Domain Data and your should get the
following window. | have filled in the data for my input.

o

Data Format for Signals

ITime-Dnmain Signals j
Note we only give
the first two outputs
Workspace Yariable (states)
Iripuit: I u —
Output: | :.1:2] =
Clever name so we can remember what
the input was. DO NOT use the same
Data Information name you saved the variable in, i.e.,
g bobstepR
Data narme: I baobstep Z-’_‘l

Starting time I 0 L I . .
We started the simulation
Sampling interval: I 0.05 \ \‘ attime 0

tare | \\
We need to explicitly
[mport Feszet |

indicate the sampling
Cloze N Help |

time
N Click on Import
to load the data

Once you import the data, you should see something like the following:

) ident: Untitled O] x|
File Options ‘Window Help
I Import data j I Import modelz j
& O perations &
Pi : I <-- Preprocess j
bobstep 1'
— bobstep
Warking Data
I Estimate --» j
Data Yiews Model Yiews
To Ta
[T Time plat wiorkspace || LTI Wewer [[todel output ™| Tiransient rezp
[T Data spectra [T Model resids ™| Frequency resp
[Frequency function] JI.U"'MNW [T Zemos and poles
- hobsatep ™ o
E wit Tra=h \alidation Data [mize spectium
The character iz not a valid hotkey

At this point we are ready to use the data to make our first discrete-time model. Since the only
data that we have is from bobstep, that becomes the Working Data. To change the Working
Data, we just drag a data set over to Working Data, as you will see.

Step 8: Selecting the Model Now we need to select the model type. We want a state variable

model, and we know that there will be an extra delay in out system. Under Estimate, select
Parametric Models. You should get the following window, where | have again filled in the

required fields.

o x|
2 states, with an Structure: IStatE Space: n[nk] We want a state
space model
extra delay o I 2[2]
—
E quation: snew=fu+Bu+ke; p=Ca+Du+e
Methad: {* PEM " M45ID
. L —

This method t amme: I bobstep
works better ——— Clevername

Focus:

ISimuIatiDn 7I Initial gtate:
Diigt. model; IFi:-:K=EI 7I Covariance

)| >
i} Our system started at rest.
bl Be sure to reset the system

=

before each use so this is

Our model has no K in it

true!

Whatever you put here

|teration Fit: Improvement
[~ Trace Stop Iterations
[teration Optionz... | Order Editar. .. I
E stimate | Cloze I Help I

doesn’t really matter

If we click on Iteration Options, we see we have some choices. Most of the time the defaults

values will work fine, but sometimes you may want to change them.

_} Options for Criterion Minimizak

FixedParameter. [Default Mone]

=10l x|
|

I Drefault

b axlter: b aminnum number of iterabions [Default 20]

I Drefault

Tolerance: Termination tolerance [Default 0.07]

I Default
LirnitE rror: Robustification linmit [Default 1.5]

I Drefault

<-.I or so

You might want to try
something like 200
here

//—

J You might want to try
and reduce this to 0.2

Apply | Cloze I

Help

Step 9: Create the Model To make the model, click on Estimate. You should then get a model,

as shown below:

«) ident: Untitled -0l =|
File Options ‘Window Help Our model of the
system, based on
IImpurt data J . t- IImpnrt modelz J the input (u) and
1 G L _— output(y) data.
Pi v - Preprocess i
baobstep I 1‘ J habstep || || ‘ ‘
nd bobstep
Working Data
I E stimate --» j
Drata Wiews Model Views
To Tao
[Time plat Wiorkspace || LTI Wewer | [Model autput [Transient resp
[Dataspectra [Model resids [Frequency resp This is the
[Frequency function ,N'""I""WVV [~ Zemos and poles data we will
compare out

hobstep \l\
Euit S [Moise spechm

Trash “alidation Data
The character iz not a valid hotkey

\l model to

We should now look at how closely the model matches our input. To do this, be sure Validation
Data has the same name as the input data set. The click on Model output. The following is what

I got (for a 3 second sample):

1ol x| =loix]
File ©Options Style Channel Help File Options Style Channel Help
Measured and simulated model output Measured and simulated model output
18
Best Fits BestFits
hobstep: 75.45 10 4 [hohstep: 54.84
1.4
]
1 1]
-5
0s
-10
0 -148
a 1 2 3] 1 2 3
Time Time

To go from one channel to the other select Channel and then choose whichever one you want.
The black in the above figures show the real signal (the y values we imported) and the blue

represents the output of our model.

10

Step 10: Save the Session! It may come as a shock to some of you, but the ECP systems have a
nasty habit of locking up the computer. In order to save what you have done, you should save the
session. Select File and the Save Session As... You should save your session often to avoid
loosing your work.

Step 11: Comparing Models. At this point you are undoubtedly wondering how well does the
model you just constructed compared to a sampled version of the continuous time system you
made in Lab 1. In order to do this we first need to get our discrete-time model into Matlab’s
workspace. To do this, we just drag it to the To_Workspace box.

«} ident: bobs_session =10 x|
File Options Window Help
I Irmpart data j IImpn:nrt rodelz j
“ O perations “
p" |<-- Freprocess j ?’
hobstep ‘I' batep
VA
. ‘IIWI"'."’W
bobstep
Wiorking Data
I E stimate -3 j
Drata Views Model Yiews
Ta ‘ Ta
[~ Time plat Wigrkspace | [LTI Mewer | [Model output [~ Transzient resp
[Data spectra [T tModel resids [Frequency resp
[T Frequency function MNWN [T Zems and poles
- habstep ;
== | Trash validation Data [~ Noiss spectium
The character iz not a valid hotkey

Now our workspace has access to the discrete-time model. Next we need to load the data we
used to create this model. This is important since it gives us the system input and time vector. To
do this, type

load bobstepR

(Note: At this point we don’r really need to do this, but will will later on)

Next we use the program compare_sys_id.m. The arguments to this file are the input (u), the
output (y), the time (t), the disdrete-time model file (model), and the length of time you want to

11

plot the simulation for (Tend). In addition, you need to edit the file so it loads the correct
continuous time model file from Lab 1. Then, for my system, | would type

compare_sys_id(u,y,time,bobstep,3);

and | got the following output (yours will most likely be different):

ST

x, (displacernent crm)

s (welocity cm/sec)

Here we see the response of the model created using the system identification toolbox(sys id),
the response of the model made discretizing your continuous time model (c2d) , and the response
of the real system (Real). The color schemes looked good to me, but feel fee to modify them. If
you do change color schemes or line types, be sure they print well in black and white (unless you
print your memos in color!)

Step 12: A New Data Sets Now we want to try and make a model of our system using a different
input. Let’s assume this time | use an input of a chirp. This is a signal that starts with a low
frequency and ends with a high frequency (it sounds like a bird’s chirp—hence its name).

First you need to disconnect the step from the input in Model210_DT_openloop.mdl and insert
a chirp signal. You will notice that there is no way to control the amplitude of the chirp signal, so
you will need to insert a gain to be sure to scale the signal to a small value. It is a good idea to
start with a very small value in this gain (0.001) and then increase it until your system moves a
reasonable amount. Your model file should look like the following:

12

Chirp Signal

W—»D——hu states [y

Gain To Wotksp aced

— u

Tao WMakspace

ECF Model 210
Liscrete-Time

12:34 — time

Digital Clack Tao Wokspace

The parameters | used for my system is shown below, with a gain of 0.01. You should note that

we are using very low frequencies since our system cannot really respond very quickly.

You should set the gain very low to begin with, compile the system and run it. Once you have
found a good gain and your system moves a reasonable amount, save your data. | used

Block Parameters: Chirp Signal

2]

— chirp [maszk] [link]

Output a linear chirp zignal [gine wave whose frequency vanes linearly
with time].

— Parameters
Initial frequency [Hz):

|u.1

T arget time [zecz]:

|3

Frequency at target time [Hz]:

|2

[+ Interpret vectors parameters a5 1-D

] I Cancel Help Apply

save bobchirpR u time y

13

Step 13: Load Newe Data into the System lIdentification Toolbox. Now we load this data set into
the toolbox.

-inix]

Data Format for Signals

ITime-Dnmain Signals j

Workzpace Yarnable

Inpuit: I u
Output: I W 1:2)

Data Information

D ata name: W
Starting time ID—
Sampling interval: IDDS—

Mare |

Impart I Reszet I
Cloze I Help I
And it shows up in the main window
} ident: Untitled =10 x|
File ©Options Window Help
I Irmport data j I [mpart models j
O perationz ‘l

y
@_' z v
- P -
bkt ﬁhchirp |< repm‘TSS J bobstep

[

bobstep
New data set Winrking Data

=

s
I Eztimate --» j

Data Yiews Model Yiews
To T
[T Time plat wiorkzpace || LTI Wewer | [todel output [Trangient rezp

[T Data spectra [T Model resids [Frequency resp
[Frequency function [[]] W"'.WW [~ Zemos and poles

- hobsatep e
E wit Trazh \alidation Data Maize spectium

Compiling ...

14

Step 14: Creating a Model from the New Data Set. Now we need to drag the new data to the
Working Data area and the Validation Data area, as shown below:

=} ident: bobs_session -0l =|
File Options Window Help
I Import data j I Impart rnodelz j
O perations L

1
F‘N" i Sy
- P -
hobstep hﬁt@hi(p |< repru;ess J hobstep

* bobstep
orking Data

1
I E stirnate j

[rata Yiews M odel Views

Ta Ta
[Time plat Wfarkzpace || LTI \h\ [Model output [Transient resp
[Dataspectra N Model resids [Frequency resp
[Frequency function [[]] NW‘“’W [T Zeros and poles
- hobstep ™ Noi
Euit Trash \alidation Data MHoize spectrum

The character iz not a valid hotkey

Which results in

+} ident: bobs_session ;IEIEI

File Options Window Help
I Impaort data j I Import models j

‘l, O perations ‘l,

]
P | |<-- Freprocess j j‘l"-"f\/v
hobstep ||bobchirp 1' hobstep

bobchirp
Warking Data

1
I E stimate --» j

=

Drata Yiews fdodel Views
Ta To
[Time plat Wiorkspace || LTI Wewer | [Model autput [Transient resp
[T Dataspectra [Model resids [Frequency resp
™ Frequency function [[]] J\"'ﬁ“ﬂuﬁf\" [Zeros and poles
- hobchirg Mo
E wit Trash \alidation Data Maoize zpectium

The character iz not a valid hatkey

Step 14: A New Model.Next we construct a new state space model with this data set, which will

be put into the model part of the window, as shown below:

} ident: Untitled

File Options

I Import data

=~

‘ e]
| hobstep |[bobchirp

Drata Yiews

[T Time plat

[T Data zpectra

[Frequency function

E wit

Window Help

O perations

=10 x|

I Import modelz j

i

7
|<-- Freprocess j W w
1_ bobstep ||bobchirp
— bobchirgp
Warking Data
I E ztimate --» j
Model Yiews
Ta Ta
Workspace || LTI Wewer [[Model output ™ Transient resp
[Model resids ™ Frequency resp
[[]] J\ﬁ'"rl'-ﬁ-"v [Zemos and poles
bobchirp ;
Trash validation Data [Noise spectrum

The character iz not a valid hotkey

The comparison between the model and the input data (used to construct the model) is then
shown below (for my system)

=0
File ©Options Style Channel Help
Measured and simulated model output
Best Fits
0.z 1 |hobchirp: 81.9
0
1]
-0
-0.2
-0.3
0.4 \
a 1 2

Time

=0
File ©Options Style Channel Help
Measured and simulated model output
Best Fits

hobchirp: 75.82

Time

16

Step 15: We Finally Stop Cheating (Sort of). At this point you should be told that it is generally
considered to be quite bad in system identification, and in many other fields, to use one data set

to generate the model, and then try an validate the model by comparing it to the data used to
generate it. This is certainly a good first step, since if the model doesn’t match the data used to
generate it, the model is not likely to work well for other inputs. Hence, in this case we will
utilize the bobstep data set as a validation data set. To do this, we drag bobstep to the Validation

Data box, and then look at the model output, as shown below:

«} ident: Untitled

File Options Window Help

I Impaort data j

1

bﬁs@iep bohchirp

O perations

1

=

bobchirp

Wiarking

i

Dats

_i |<-- Preprocess j

I E shirgate --»

D ata Wiews
[Time plat
[T Dataspectra
[™ Frequency function

E wit

=

To
Wiarkspace

Ta

LTI

Tras

h

=131]

I Import models j

4

NANRAN

hobstep ||bobchirp

tdodel
Iv Model output
[Model resids

bobstep

“alidation Dats
The character iz not a valid hatkey

Wiews

[Transient resp

[Frequency resp
[T Zeros and poles

[Maoize spectium

At this point, we can see how our newest model, bobchirp, matches the measured output when
the input is a step. As these figures show, there is an offset between the model output and the

measured output for this input. This is fairly common for these systems, and there are some ways
we can try to fix this, which we will mention later in this lab.

+} Model Output: ¥1

File ©Options Style Channel Help

Measured and simulated model output

=10l x|

hobchirp: 39.33

BestFits

=lgix

File Cptions Style Chanrel Help

Measured and simulated model output

BestFits
1 hobchirp: -10.26

Titme

17

If we want to compare how well the models from both bobchirp and bobstep compare when the
input is a unit step we make sure they are both highlighted, as shown below:

-} ident: bobs_session =10 x|
File Options Window Help
I Irmport data j I [mpart models j J
", O perationz ",
-/ /__’Z_/I
P. _ |<-- Freprocess j W/ = [|
hobstep |[hobchim 1_ bobstep |[bobchirp
= bobchirgp
‘Wiorking Data
I E ztimate --» j
Data Yiews Model Yiews
Ta Ta
[T Time plat Wiorkspace || LTI ewer [[Model output [Tranzient rezp
[T Data zpectra [T Model resids [Frequency resp
[Frequency function [[]] NW [T Zemos and poles
- habsteg Noi
E xit Trazh \alidation Data Moige spectium
The character iz not a valid hotkey

Clickon a
model to
highlight it

The outputs for the different models and the true output are shown in different colors, as shown

below.

J Model Output: ¥1

File ©Options Style Channel Help

Measured and simulated model output

1= =0
File Cptions Style Channel Help
Measured and simulated model output
Best Fits BestFits

hobstep: 75.45
hobchirp: 39,33

1 hobstep: 54 84
| baobchirp: -10.26

18

Step 16: Comparing with the Discretized Continuous Time Model (Again). In order to do this
we again need to get our discrete-time model into Matlab’s workspace. To do this, we just drag
it to the To_Workspace box.

+} ident: Untitled O] x|
File Options ‘Window Help
I Import data j I Import modelz j
& O perations &
]
’ |<-- Freprocess j m w
| hobstep |[bobchirp 1_ bobstep ||bpHchirp
— bobstep
Warking Data
I Estimate --» j
Data Yiews Model Yiews
Ta ‘/ Ta
[T Time plat Workspace || LTI ewer [v Model output [Tranzient rezp
[T Data zpectra [Model resids ™ Frequency resp
™ Frequency function [[]] NUW [~ Zeros and poles
- hobsatep Mo
E wit Trazh \alidation Data Moize spectium
The character iz not a valid hotkey

Now our workspace has access to the discrete-time model. Next we need to load the data we
want to test our model against. This is important since it gives us the system input and time
vector. If we are going to test against a step input, type

load bobstepR

Next we again use the program compare_sys_id.m. The arguments to this file are the input (u),
the output (y), the time (t), the disdrete-time model file (model), and the length of time you want
to plot the simulation for (Tend). In addition, you need to load the correct continuous time model
file from Lab 1. For my system, | would type

compare_sys_id(u,y,time,bobchirp,3);

and I got the output shown on the following page.

19

Hy (displacerment cm)

S (velocity cm/sec)

Here we see the response of the model created using the system identification toolbox(sys id),
the response of the model made discretizing your continuous time model (c2d) , and the response
of the real system (Real).

Step 17: Merging Data Files.Sometimes we want to combine more than one data file to try and
make a model. To do this, under Preprocess select Merge Experiments. A new window will
pop up as follows:

+J Merge Experimen - O] x|
Dirag data sets
from data boards List of set
and.. izt of etz
drop them here =
to be merged _I
o
Data namme: I babehirpm
Inizert | Fewvert I
Cloze | Help I

In order to merge the experiments, you need to drag them over and drop them where indicated,
and then select Insert, as shown on the next page

20

)} ident: bobs_session

File Options indom

=l

I Irmpart data

S
—
balﬁe\p hnth‘rp

AY

\

D ata Wiews
[Time plat
[~ Data specha
[Frequency function

E st

Help

Operationz

=~

|<-- Preprocess

t

=

hobchirg
Wiarking Data

i

I ESKTI:E ¥ j

=10l x|

I Irmpart models

-

i

Ta Ta
ok zpac LTI “Aewer

v tdodel output

[todel resids

[Virnee

hobsten
“alidation Data

bobstep ||bobchirp
kodel iews

[Transient resp
[Frequency resp
[~ Zemos and poles

[Moize spectum

Select Insert
to merge the
data sets

-} Merge Experiment

Nrag data zets
frixn daby boards
ard .

Lizt

drop\fherm here
to be merged

bobstep
bobehirp

=10l x|

aof gets

— 1

The names of
the data sets
to be merged

D ata narme: I biobchirpm
Inzert I Rewert |
Cloze I Help |

21

-} ident: bobs_session =101 x|

File Options ‘Window Help

The new Il""'l:":"t data j ||m|:u:|rt models j
data set J, [0 perations J-

O |<-- Preprocess j WW

goes here
|hnbs¢ep hobchirp 1_ bobstep |[bobchirg
Inhchirprm

— bobchirp
Warking Data
I Estimate --» j
Data Yiews Model Yiews
To To
[T Time plat wiorkspace || LTI Wewer | v tdodel output [Transiert rezp
[T Data spectra [T Model resids [Frequency resp
[Frequency function [[]] JI.U"'MNW [T Zemos and poles
- hobsatep Mo
E wit Trazh \alidation Data Moize spectium

The character iz not a valid hotkey

You can now use the merged data set to construct a new model, and the response of the new
model to any of the other data sets. Note, however, that sometimes merging files does not
produce a better model than the two individual files did.

Part B: Some Possible Inputs/Guidlines

Below I have listed some of the things that | have tried. You do not need to try these, but they
may be a good starting point. | also found for my systems that it was more difficult to get a good
model for the rectilinear system than for the torsional system.

Generally Good Inputs are: Pulses, Chirp, Bandlimited White Noise, Multiple Sine Waves

Combinations of these are also good (use a summation block to add the inputs). Keep the
frequencies at a maximum of 4-5 Hz, usually lower. The power in the white noise sources should
be very small (start with 0.00001 and then increase it) | found that using pulses with a period of 5
seconds and a duty cycle of 50% in parallel with another input often worked fairly well. For
many of the sources, such as noise or chirp sources, the system identification toolbox tends to
produce a better model the more data it has to work with (i.e., the longer the system is allowed to
run).

22

Part C: For You to Do

For each of your systems, you need to try and find three treasonably good models, in addition to
one model using only a step input to create the model. (A total of four models.) For each of these
models you need to include the following:

1) A description of the input source (or sources if you merged data). This needs to be sufficiently
detailed that I, or future students, could exactly duplicate your input.

2) The corresponding name of the state variable model. What | mean is that at the end of the
program compare_sys_id.m a state variable model is stored in the file

sys_id_1dof model210.mat.This file needs to be renamed and you need to tell me the name and
relate it to the inputs used to create the model (from requirement 1 above). Be sure to use a
naming convention so you can tell the torsional models from the rectilinear models! In lab 5 you
will be comparing the different models when we try and use state variable feedback to control
the system, and you need to know which file goes with which source.

3) A plot comparing the response of your model created by the system identification toolbox and
the response of the discretized version of your continuous time model, for a step input. This is
the output of the compare_sys_id.m program.

4) The name of the discretized state variable model for both the rectilinear and torisional
systems. Again, at the end of the program compare_sys_id.m the discretized state variable
model is stored in the file c2d_1dof model210.mat .You need to change the name, or at least be
sure the model file for the 205 system is named differently.

The body of your memo should contain the information from parts 1,2, and 4 above. You should
try and see if you can put the information in a table. You should also indicate which of your
input sources, other than the step, seemed to work best for creating a model that matched a step
input.

23

