
ECE-520 Lab 10 
Modeling, Simulation, and Control of a 2 Degree of Freedom Inverted Pendulum System 
Using a Minimum Order Observer 

 
Overview In this lab you will model, simulate, and control both a regular pendulum on a 
cart and an inverted pendulum on a cart. Note that the system we are controlling is 
unstable! The files you need will be in the pendulum folder, but you will need some of 
your minimum observer files. You can work with a lab partner on this lab. 
 
For the two degree of freedom regular pendulum system we are going to control, 
with , ,1q x= 2q x= 3q θ= , and 4q θ= ,  we get the following state equations 
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We need to identify all of these quantities to get the A and matrices for the state variable 
description. For our system  and  is determined by whatever we want the output 
to be. Once we have the continuous time model we will sample it an use a minimum 
order controller to control the system. Once we can control the regular pendulum, we will 
determine the model for an inverted pendulum and then try and control that one using a 
minimum order observer. 
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Step 1: Set Up the System.  Only the first cart should be able to move.  In addition: 
 

• There should be  two large masses on the first cart. 
• There should be no springs between the motor and the cart and one heavy spring 

between the first and second carts.  
• Do not use a damper. 
• The pendulum should be securely fastened to the first cart. It should rest on top of 

the masses and be securely tightened. 
• The mass on the pendulum should be within about 2 or three inches from the 

pivot. Remember that the cart must be able to get under the center of mass of the 
pendulum in order to right it, so if the center of mass of the pendulum is too far 
away the cart will never be able to get under it. The ECP system should be moved 
to the edge of the bench, so that the pendulum is completely free to swing without 
hitting the bench. 

• The wire to measure the position of the pendulum position encoder should be 
securely attached (with the screws) and the cart and pendulum should be free to 
move. 



 
Step2a) Estimate of  θω  
 
From the equations of motion, if we assume the cart is fixed, then 0x =  and we have 
 

2 0θθ ω θ+ =  
This is the equation for a simple pendulum. If the pendulum is deflected a small angle and released, it 
will oscillate with frequency θω .  
 
To measure this: 

• Set the input in Model210_Openloop.mdl  to 0 
• Set the X-Y graph in Model210_Openloop.mdl to measure the position of the pendulum. You 

may want to change the y-min and y-max values in the X-Y graph. We are measuring angles in 
radians, not degrees. 

• Displace the pendulum and let it go. Since we are using a small angle assumption, the pendulum 
should not be displaced too far. 

• Using Matlab, plot the displacement of the pendulum versus time, and determine the period of 

the pendulum, Tθ ,  and determine 2
Tθ
θ

πω = .  

Step 2b) Estimation of 1ω and 1ζ  
 If we assume there is not input ( 0F = ) and the pendulum does not move very much ( 0θ ≈ ) then we 
have 
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Use the log-decrement method to get estimates of 1ω and 1ζ .  Not that we don't really have the case of 
, but this approximation is not too far off. You will need to include these log-decrement results in 

your memo. Note that this is an equation in 
0θ ≈

x , not θ !!! 
 
Step 2c) Estimation of 2K  
 
Applying a step input of amplitude A  to the cart, estimate 
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Step 2d) Fitting the Estimated Frequency Response to the Measured Frequency Response  
 
The transfer function between the input and the position of the first cart is given by 
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We will use this expression to determine  and get better estimates of 1K 1ω and 1ζ , then 
we will have all of the parameters we need for our state variable model. We will be 
constructing the magnitude portion of the Bode plot and fitting this measured frequency 
response to the frequency response of the expected transfer function to determine these 
parameters. For each frequency 2 fω π=  we have as input ( ) cos( )F t A tω=  where, for 
out systems, A is measured in centimeters. After a transition period, the steady state 
output will be ( ) cos( )x t B tω θ= +  for the position of the first cart 
 
 Since we will be looking only at the magnitude portion of the Bode plot, we will ignore 
the phase angles. 
 
You will go through the following steps 
 
For frequencies  Hz 0.5,1,1.5...7.5f =
 

• Make sure the first cart is free to move. 
• Modify Model210_Openloop.mdl so the input is a sinusoid.  
• Set the frequency and amplitude of the sinusoid. Try a small amplitude to start, 

like 0.1  
• Compile Model210_Openloop.mdl if necessary. This is usually not necessary so 

only do it when you have to (the program will let you know.) 
• Connect Model210_Openloop.mdl to the ECP system. (The mode should be 

External.) 
• Run Model210_Openloop.mdl. If the cart does not seem to move much, increase 

the amplitude of the input sinusoid. If the cart moves too much, decrease the 
amplitude of the input sinusoid. Note that if the cart hits the stops you will 
probably need to adjust the pendulum. Be sure the system reaches steady state 
before you measure the amplitude! 

• Record the input frequency ( f ), the amplitude of the input ( A ), and the 
amplitude of the output ( ) when the system is in steady state. You will 
probably want to use the file get_B.m. 
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You will probably notice that the output does not look quite as sinusoidal as usual. This is 
because we are not really giving the pendulum enough time to reach steady state. Enter 
the values of f , A , and  into the program process_data_pendulum.m (you need to 
edit the file) 
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At the Matlab prompt, type data = process_data_pendulum; 
 
Step 3a)  Modeling  the Regular Pendulum 
 
Run the program model_pendulum_full.m. There are 5 input arguments to this program: 
 

• data, the measured data as determined by process_data_pendulum.m 
•  the estimated value of  2K
• θω , the estimated frequency of the pendulum, in radians/sec 
• 1ζ , the estimated damping ratio of the cart. 
• 1ω , the estimated natural frequency of the cart, in radians/sec 

 
The program model_pendulum_full.m will produce the following: 
 

• A graph indicating the fit of the transfer function from the input to the position of 
the cart to the measured frequency response data. 

• The optimal estimates of all parameters (written at the top of the graphs) 
• A file state_model.mat in your directory. This file contains the A, B, C, and D 

matrices for the state variable model of the system. YOu should change the name 
of this file to regular_pendulum.mat. 

•  A list of the poles and zeros of the estimated transfer function. This allows you to 
see how close to a pole/zero cancellation you have. 

 
You need to be sure you have 4 points close to the resonant peaks of the transfer 
functions. This is particularly true if you have very small values of ζ (which 
correspond to very sharp peaks.) In addition, you should add points near the 
frequency of the pole/zero cancellation to clean things up. You may also want to 
simulate the system at the natural frequency of the pendulum. 
 
You should also compare the final estimates of the parameters with your initial estimates. The values for 
the all of the frequencies and gains should be fairly close to the final values. The damping ratios may be 
quite different.  
 



 
Step 3b)  Controlling the ECP System with Simulink for the Regular Pendulum
 
We want first of all to try and control a regular pendulum.  This is actually a  regulator 
problem in that we will be trying to maintain a set point (i.e., to keep the pendulum 
pointing down.)  
 

a) Load the model file regular_pendulum.mat into your two degree of freedom 
minimum observer Matlab driver file. 

b) Assume we are sampling with a sample interval Ts = 0.03 seconds (you can 
change this later if you need to). 

c) The state vector for the original system will be in the order 
T

dx x uθ θ⎡ ⎤⎣ ⎦ , 

we need the system modified so the states are in the order 
T

dx x uθ θ⎡ ⎤⎣ ⎦ . 
You should also change the demux outputs in your Simulink models (both the 
model that will drive the ECP system and the model that we will use in our 
simulations. 

 
d) You will need to change the variable get_desired_states  so the ECP system 

knows the order we are using. It should be changed as follows: 
 

              get_desired_states = [1 0 0 0 0 0 0 0;  
                                                 0 0 0 0 0 0 1 0; 
                                                 0 1 0 0 0 0 0 0; 
                                                 0 0 0 0 0 0 0 1]; 

 
e) Design a minimum order observer assuming both positions are known and 

simulate your system. Since this is a regulator problem there is no input into the 
system. Assume an initial displacement of 1 degree for the pendulum. Simulate 
your system. Your pendulum should come to rest within 1 second and your cart 
should not move more than 0.5 cm. You may have to change your poles around to 
make this happen. 

 
f) Once your simulation is working properly, in Matlab’s workspace set Tf=20 and 

compile your ECP driver (with the minimum order observer). Reset the system 
when the pendulum is pointing down and is at rest. Start the ECP system, and if 
you haven’t screwed up the system should do nothing. Gently poke the pendulum 
with a ruler (in the cabinet, do not use your hands). The cart should move to keep 
the pendulum pointing down. Plot your estimated and true states for the system 
and show me the plot. 

 
g) Once your regular pendulum is working correctly we can move onto the inverted 

pendulum. You need to run the file model_inverted_pendulum_full.m, which is 
exactly like model_pendulum_full.m except it models the inverted pendulum (all 
that really changes is the sign of some terms in the A and B matrices). This file 



produces a mathematical file state_model.mat which you should rename 
inverted_pendulum.mat. 

 
h) Simulate your inverted pendulum as you did in part d, although your cart may 

move more than it did for the regular pendulum. Try and keep the cart from 
moving more than 1.2 cm from its initial position. 

 
i) In your ECP driver file you will need to replace the yellow ECP Model 210 

Discrete Time block with  the ECP Model 210 Discrete Time Inverted 
Pendulum block. This block is available in the inverted.mdl file. 

 
j) In Matlab’s workspace set Tf = 20 and compile your ECP driver file (with the 

minimum order observer). Be sure the system is a rest and the pendulum is 
pointing down, then reset the system. Connect the ECP driver to the system and 
slowly raise the pendulum to 90 degrees. If you’ve done this before you know that 
the system is very sensitive to the initial displacement (from your simulations you 
should have seen that even being off by 1 degree can make it difficult to recover.) 
Once you think the pendulum is in the correct position, have your partner start 
your system. It is likely to take a few tries before it stays up by itself. Be sure I 
see your pendulum working before you leave. 

 
 
There is no memo due, but you must get me or a designated representative to sign below, 
and turn this in at the end of lab: 
 
 
 
Lab partners:________________________________________________________ 
 
I actually saw this think working: ________________________________________ 


