
ECE-520: Linear Control Systems 
Homework 5 

 
Due: Thursday  January 12  at 5 PM        Exam 1, Monday January 23 in Class 
 
 

1) Consider the following state variable system  
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Here  is the prefilter gainpfG , is the reference input( )r k , and [ ]1 2K k k= is the feedback gain 
matrix. The state variable model for the plant is assumed to be  
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 From the diagram we have .  ( ) ( ) ( )pfu k G r k Kx k= −
 
a)  Determine an expression for the transfer function between the input ( )R z  and the output 

. ( )Y z
 
b) Assuming  and using the Final Value Theorem,  show that for a single input single 
output system to have a zero steady state error for a unit step input we need to choose the 
prefilter to be 

0D =
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1
( )pfG

C I G HK H−=
− +

 

 
Hint: In order to have a zero steady state error for a unit step input, the final value of the output, 

( ) ssy y∞ =  , should be 1. 
 



2) Consider the discrete-time state variable model  
 

( 1) ( ) ( )x k Gx k Hu k+ = +  
with the initial state . Let (0) 0x =
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0=  

 
a) Determine the corresponding transfer function for the system. 
 
b) After 1 time step we have (1) (0) (0)x Hu Mu= =  so M H= . After 2 time steps we have 

[ ] (0)
(2) (1) (1) (0) (1) (1)

(1)
u

x Gx Hu GHu Hu GH H Mu
u
⎡ ⎤

= + = + = =⎢ ⎥
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so [ ]M GH H=  and [ ](1) (0) (1) Tu u u= . Now assume we want [ ](2) 1 0 Tx = . Can you find 
an input vector , and hence input values  and , to make this happen? If you cannot 
go from the origin to any possible state in at most

(1)u (0)u (1)u
 n steps, where , then the system is not 

controllable. Why at most n steps? See below….. 
( ) nx k ∈

 
c) The Cayley-Hamilton Theorem from Linear Algebra states that a matrix satisfies its own 
characteristic equation. The characteristic equation of a matrix G is found by setting the 
determinant of  W z  equal to zero. Show that the characteristic equation for our system is 
given by  and then verify that 

I G= −
2 1 0z − = 2 0G I− = . 

 
d) Now let’s look at the third time step 
 

2(3) (2) (2) (0) (1) (2)x Gx Hu G Hu GHu Hu= + = + +  
 

Using the Cayley-Hamilton Theorem, we can write 2G I= . Show that we can then write 
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e) Show that we can write  
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At this point, it should be clear that if we cannot find an input to go from the origin to a 
particular final state in n = 2 steps for a second order system we never will be able to get there, 
no matter how long we let the system run. If , then the controllability matrixnx∈  is defined to 
be 1 2 ...n nM G H G H GH H− −⎡= ⎣ ⎤⎦ .  For a system to be controllable, this matrix must have 
rank n, or, equivalently, n linearly independent columns (or rows). 



 
f) Now assume we are using state variable feedback with a prefilter gain G , so 

. Here is the reference input
pf

( ) ( ) ( )pfu k G r k Kx k= − ( )r k  and [ ]1 2K k k= is the feedback gain 
matrix. With this form of state variable feedback, we have the system 
 

( 1) ( ) ( ) ( ) [ ] ( ) [ ] (pf pf )x k Gx k H G r k Kx k G HK x k HG r k⎡ ⎤+ = + − = − +⎣ ⎦  
or 

( 1) ( ) ( )x k Gx k Hr+ = + k  
Note that now the system input is the reference input . Show that for  the transfer 
matrix is given by 

( )r k 0D =

 
1

1 2 1 2

( 1)( )( ) ( )
( ) ( )( ) ( 1)( 1)

pfG zY zF z C zI G H
R z z k z k k k

− +
= = − =

+ + − − −
 

 
g) Show that if  and , the transfer function reduces to that found in part a. 1pfG = 1 2 0k k= =
 
h) Is it possible to find  and to place the poles of the closed loop system where ever we 
want? For example, can we make both poles be zero? 

1k 2k

 
In summary, if the system is controllable 
 

• We can go from the origin to any final state in n steps ( the rank of the controllability 
matrix M is n) 

 
• We can place the poles of the closed loop system anywhere we want using state variable 

feedback 
 



3) Consider the discrete-time state variable model  
 

( 1) ( ) ( )x k Gx k Hu k+ = +  
with the initial state . Let (0) 0x =
 

[ ]1 0 0
, , 0 1 ,

1 1 1
G H C D⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

0=  

 
a) Determine the corresponding transfer function for the system. 
 
b) Find the M matrix after two time steps.  Now assume we want [ ](2) 1 1 Tx = . Can you find an 
input vector , and hence input values  and , to make this happen?  (1)u (0)u (1)u
 
c) Show that the characteristic equation for G is given by 2 2 1z z 0− + =  and verify that 

. 2 2G G= − I
 
d) Show that we can then write 
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e) Show that we can write  
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f) Now assume we are using state variable feedback with ( ) ( ) ( )pfu k G r k Kx k= − . Show that for 

 the transfer matrix is given by 0D =
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g) Show that if  and , the transfer function reduces to that found in part a. 1pfG = 1 2 0k k= =
 
h) Is it possible to find  and to place the poles of the closed loop system where ever we 
want? For example, can we make both poles be zero? 

1k 2k

 



4) Consider the discrete-time state variable model  
 

( 1) ( ) ( )x k Gx k Hu k+ = +  
with the initial state . Let (0) 0x =
 

[ ]0 1 0
, , 1 0 ,

1 1 1
G H C D⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

0=  

 
a) Determine the corresponding transfer function for the system. 
 
b) Find the M matrix after two time steps.  Now assume we want [ ](2) 1 0 Tx = . Can you find an 
input vector , and hence input values  and , to make this happen? Now assume we 
want

(1)u (0)u (1)u

[ ](2) 0 1 Tx = . Can you find an input vector  to make this happen?  (1)u
 
c) Show that the characteristic equation for G is given by 2 1 0z z− − =  and verify 
that . 2G G= + I
 
d) Show that we can then write 
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e) Show that we can write  
 

[ ]
[ ]

(4) (3)

(3) 2 (0) (1) (2) (0) (1) (3) T

x GH H u

u u u u u u u

=

= + + + +
 

 
f) Now assume we are using state variable feedback with ( ) ( ) ( )pfu k G r k Kx k= − . Show that for 

 the transfer matrix is given by 0D =
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g) Show that if  and , the transfer function reduces to that found in part a. 1pfG = 1 2 0k k= =
 
h) Is it possible to find  and to place the poles of the closed loop system where ever we 
want? For example, can we make both poles be zero? If we want the poles to be at 
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show that  and . 1 11 ( )k p= − + 2p 2p2 11k p= +
 
 



5) For the discrete-time state variable system given by 
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a) Assuming state variable feedback, find a state variable feedback matrix K  to place the closed 
loop poles at 0 and 0.1. 
 
b) Find a state variable feedback matrix K  that will result in deadbeat control. 
 
c) Using the value of K  determined in part b, determine the correct value of prefilter gain so 
the steady state error for a unit step is zero. 

pfG

 
 
6) For the discrete-time state variable system given by 
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a) Assuming state variable feedback, find a state variable feedback matrix K  to place the closed 
loop poles at 0 and 0.1. 
 
b) Find a state variable feedback matrix K  that will result in deadbeat control. 
 
c) Using the value of K  determined in part b, determine the correct value of prefilter gain so 
the steady state error for a unit step is zero. Feel free to use a computer on this part. 

pfG

 
 
 



Preparation for Lab 5 (to be done individually) 
 
7) The one degree of freedom discrete –time Simulink model DT_sv1.mdl implements a state variable model 
with state feedback. This model uses the Matlab code DT_sv1_driver.m to drive it. Both of these programs are 
available on the course website. The blue and yellow blocks represent the model of the system which will be 
replaced with the ECP driver/real system in lab. 
 

a) Load your one degree of freedom rectilinear model that was obtained by discretizing your continuous 
time model. 

b) Modify the Matlab code (the poles and the place command) to place the poles of the closed loop system 
in such a way so that for a 1 cm step input: 

• the settling time for your system is less than 1 s 
• the percent overshoot for your system is less than 20% 
• the control effort does not hit a limiter (does not saturate) 
• the steady state error is zero 

c) Simulate the system and turn in your graph. 
d) Modify the Matlab code so your system has deadbeat response, if possible. You may need to use the 

Acker command instead of place to do this. 
 
8) Copy  DT_svl.mdl  and  DT_sv1_driver.m to DT_sv2.mdl and DT_sv2_driver.m, respectively, and them 
modify the new files to  work with a two degree of freedom system. All of the states except the last (delayed 
input) state must be plotted, as well as the control effort and the output state (y). Assume we want to control the 
position of the second cart (You may have to change the C matrix to do this.) Then 
 

a) Load your two degree of freedom rectilinear model that was obtained by discretizing your continuous 
time model. 

b) Modify the Matlab code (the poles and the place command) to place the poles of the closed loop system 
in such a way so that for a 1 cm step input: 

• the settling time for your system is less than 1 s 
• the percent overshoot for your system is less than 20% 
• the control effort does not hit a limiter (does not saturate) 
• the steady state error is zero 

c) Simulate the system and turn in your graph. 
d) Modify the Matlab code so your system has deadbeat response, if possible. You may need to use the 

Acker command instead of place to do this. 
 
 
 


