
ECE-520 Lab 4 
Discrete-Time PI-D and I-PD Controllers and sisotool 
 
Overview 
 
In this lab you will be controlling the one degree of freedom systems you previously 
modeled using PI-D and I-PD controllers. Both one degree of freedom systems must be 
controlled, and if there are two people in your lab group each lab partner should do a 
different system. 
 
You will need your Matlab model files for your systems and the files DT_PID_driver.m 
and DT_PID.mdl from your homework or last weeks lab. You will need to copy and then 
modify Model210_DT_PID.mdl and Model205_DT_PID.mdl  from last week’s lab. You 
will also need the files from the basic files group (ECPDSPReset.c, ECPDSPReset.dll, 
ECPDSPRest.c, ECPDSPDriver.c, ECPDSPDriver.dll, ECPDSPDriver.h) 
 
You will also need the file state_model_1dof_model210 from the class website in order to 
simulate the example given in the beginning of this lab. This is a continuous time state 
variable model which, when sampled with the appropriate sample interval, should give 
the plant transfer function used in the examples. 
 
Design Specifications: For each of your systems, you should try and adjust your 
parameters until you have achieved the following: 
 
Torsional Systems (Model 205) 
 

• Settling time less than 1.5 seconds. 
• Steady state error less than 2 degrees for a 15 degree step, and less than 1 degree 

for a 10 degree step (the input to the Model 205  must be in radians!) 
• Percent Overshoot less than 25% 

 
Rectilinear Systems (Model 210) 
 

• Settling time less than 1.5 seconds. 
• Steady state error less than 0.1 cm  for a 1 cm step, and less than 0.05 cm for  a 

0.5 cm step 
• Percent Overshoot less than 25% 

 
 

Your memo should include four graphs for each of the 1 dof systems you used (one PI-D 
and one I-PD controller using two sample rates for each system.) Your memo should 
compare the difference between the predicted response (from the model) and the real 
response (from the real system) for each of the systems. 

 
 

 1



 
 

 
Background:  While PID controllers are very versatile, they have a number of 
drawbacks. One of the major drawbacks is that for a unit step input, the control effort 

can be very large at the initial time. This is referred to as a set-point kick. There are 
two commonly used configurations of PID controls schemes that utilize a different 
structure, the PI-D and the I-PD controllers. These are a bit more difficult to model using 
Matlab’s sisotool, but it can be done and we get to explore more of sisotool. 

( )u k

 
The PI-D controller avoids the set-point kick by putting the derivative in the feedback 
path, while the I-PD controller avoids the set-point kick by placing both the derivative 
and proportional terms in the feedback path. Both types of controllers can be 
implemented using the following Simulink model, which you should construct and name 
appropriately: 
 

 
 
For the PI-D controller,  we have 

( )
( )

1 1
p ii

p

K K z KK zC z K
z z

p+ −
= + =

− −
,  1 ( 1)( ) (1 ) d

d
K zF z K z

z
− −

= − =  

 
while for the I-PD controller we have 

1( )
1 1

i iK K zC z
z z−= =

− −
, 1 ( )

( ) (1 ) p d
p d

K K z K
F z K K z

z
− d+ −

= + − =  

 
Note that for both controllers we might want to use a lowpass filter (such as a running 
averaging filer) in series with a differentiator. 
 
For both of these controllers, if we ignore the prefilter (assume it is unity),  the transfer 
function from input to output is 

( ) ( )( )
( ) 1 ( ) ( ) ( ) ( )

p

p p

C z G zY z
R z F z G z C z G

=
+ + z

 

 2



 
 

In the Simulink models we have represented the plant  in state variable form. ( )pG z
Next we need to use sisotool to help determine reasonable values for pK  , , and . iK dK
 
When you start sisotool, you need to click on FS to get the proper configuration. Note 
that sisotool uses a + sign after the , where we are using a – sign. ( )F s
 
 
 

 

Click on FS 
until you get 
this controller 
configuration 

 
 
Sisotool will allow us to modify both  and , but it is much easier to 
modify . We will have to iterate between both of these. 

( )C z ( )F z
( )C z

 

For practice, let’s assume our plant is 3 2

12.13 11.48( )
0.7691 0.8668p

zG z
z z z

+
=

+ +
where we have 

used a sampling interval of 0.1 seconds. To enter this into Matlab we need to be sure to 
include the sampling interval so Matlab knows this is a discrete-time system, so type 
 
Gp = tf([12.13 11.48],[1 0.7691 0.8668 0], 0.1) 
 
 

 3



 
 
 
 
Our original root locus should look like the following: 
 

 
 
 
 (Note: in this figure I have fixed the axes to be a square of 1.5 units in each direction. To 
do this, use Edit-> Root Locus -> Properties-> Limits. Also be sure the controller 
configuration may need to be changed to match this!)  
 
 
 
PI-D Controller:  Assume we want to use a PI-D controller.  In this case, for simulation 

purposes, we have 1 ( 1)( ) (1 ) d
d

K zF z K z
z

− −
= − = . We will start off assuming , 

but this is just a guess! However, since we have the wrong sign on the summer 
after , we enter the gain as a negative number in sistool. Hence for this guess we 
enter a gain of -0.01 and a zero at 1 and a pole at the origin (which gives us a 
differentiator). This is shown below : 

0.01dK =

( )F z

 

 4



 

Note the gain 
is negative 
here! 

 
 
After entering this into sisotool (and leaving ( ) 1C z = , the default), we get the following 
root locus plot: 
 

 

The gain is 
not negative 
here 

 
 

Next we’ll enter the PI part of the controller into. As a starting point, let’s assume  
 

 5



0.0152( 1.4)( )
1

zC z
z

+
=

−
 

 
We will get the following root locus plot 
 

 
 

 
At this point we can drag the zero around and also drag the red squares around (which 
change the gain value). However, we can do nothing to change  except to edit it. ( )F z
The step response for this controller configuration is shown on the following page: 
 

 6



 
 

 
 
Note that, compared to a normal PID controller, the control effort is not infinite at 0, and 
actually builds as time goes on (like an integral controller). At this point we might want 
to go back modify  to see if we get acceptable performance. If we cannot get 
acceptable performance we may then have to try another value for . 

( )C z
( )F z

 
If we assume these controllers are OK, then for our systems we will enter 
 

0.01( 1)( ) zF z
z
−

= , 0.03648( ) 0.02128
1

zC z
z

= − +
−

 

 
where we have determined  

0.02128 0.03648 0.01p i dK K K= − = =  
Note that we now use the positive coefficient for . At this point we have the choice 
of either converting to a PI and D controller, or using and  directly. The second 

( )F z
( )F z ( )C z

 7



choice is easer to do from sisotool, but is not as used in practice. To use these transfer 
functions ( and  ) in Matlab you would type something like the following: ( )F z ( )C z
 
F = 0.01*tf([1 -1],[1  0],Ts); 
C = 0.0152*tf([1 1.4],[1 -1],Ts); 
[num_F,den_F] = tfdata(F,’v’);  % extract the numerator and denominator of F 
[num_C,den_C] = tfdata(C,’v’);  % extract the numerator and denominator of C 
 

Finally, we should simulate the controller in Matlab/Simulink to be sure it matches the 
results from sistool reasonably well before we go on to implement the controller on the 
ECP system. The Matlab/Simulink results are shown below:  

 
 
I-PD Controller:  Now we’ll assume we want to control the same plant, but this time use 
an I-PD controller. We first have to guess a PD controller. As a start, we’ll try the 
following PD controller 

1 ( ) 0.01( 0.8)( ) (1 ) p d d
p d

K K z K zF z K K z
z z

− + − −
= + − = =  

When we implement this controller in sisotool, we need to be sure the gain is negative, as 
shown below: 

 

 8



 

Note the 
gain is 
negative 

 
 

 
Since you will be changing  a lot, I would click on Apply, not OK, so the window 
stays on the screen. 

( )F z

 
The root locus plot at this point ( ( ) 1C z = ) is shown below 
 

 

 9



 
 

 

Next we have to try an I controller for . Let’s assume( )C z 1

0.1( )
1 1

i iK K z zC z
z z z−= = =

1− − −
.  

 
Note that the only thing we can change here is the gain, the pole at 1 and zero at the 
origin are fixed! After entering this into sisotool, we have the following root locus plot.  
 

 
 
 
This is clearly an unstable system, so we need to change something! With the we 
can only change the gain, which will not help us here (we have two poles outside the unit 
circle with no way to get in). Clearly we must change . After some playing around, I 
ended up with  

( )C z

( )F z

0.001( 8)( ) zF z
z
+

= , 0.037( )
1

zC z
z

=
−

 

Here we have  
 

 10



0.009 0.0375 0.008p i dK K K= = = −  
 
The corresponding root locus plot is as follows: 
 

 
 
 
 

 11



The step response for this system is then: 
 

 
 
 
If we assume these controllers are OK, then for our systems we will enter 
 

0.001( 8)( ) zF z
z
+

= , 0.037( )
1

zC z
z

=
−

 

 
into our Matlab/Simulink model. Note that we now use the positive coefficient for . 
Finally, we should simulate the controller in Matlab/Simulink to be sure it matches the 
results from sistool reasonably well before we go on to implement the controller on the 
ECP system. The Matlab/Simulink model produces the results on the following page: 

( )F z

 

 12



 
 
These results are close enough to continue. 

 13



Step 1: Copy, rename, and modify DT_PID_Driver.m to read in the correct model file 
and implement the new structure. In particular, it must now determine  and . ( )C z ( )F z
 
Step 2: Copy, rename, and modify DT_PID.mdl to implement the new structure in 
Simulink. 

 
For each of  your  two 1 dof systems,  you will need to go through the following steps:

 
Step 3:  Set up the 1 dof  system exactly the way it was when you determined its model 
parameters. 
 
Step 4: Modify your …driver.m file to read in the correct model file. You may have to 
copy this model file to the current folder. 
 
Step 5: Modify your …driver.m to use the correct saturation_level for the system you 
are using. 
 
Step 6: Set the sampling interval to 0.1 seconds (the first time) and then 0.05 seconds 
 
Step 7:  Modify the ECP driver files and rename appropriately. It is best to copy your 
previous files, then rename them, and then edit. 
 
Step 8:  PI-D Control  
 

• Design a PI-D controller to meet the design specs. Use a constant prefilter (i.e., a 
number, most likely the number 1). Be sure to observe the limits on the other 
gains. 

 
• Simulate the system for 3.0 seconds. Be sure to use radians for the Model 205 

system! If the design constrains are not met, or the control effort hits a limit, 
redesign your controller (you might also try a lower input signal) 

 
• Compile the correct closed loop ECP Simulink driver, connect to the system, and 

run the system.  
 

• Use the Compare_DT1.m file (or a modification of it) to plot the results of both 
the simulation and the real system on one nice, neatly labeled graph. The results 
for the torsional systems must be displayed in degrees. You need to include this 
graph in your memo.  

 
 
 
 
 
 
 

 14



Step 9:  I-PD Control  
 

• Design an I-PD controller to meet the design specs. Use a constant prefilter (i.e., 
a number, most likely the number 1). Be sure to observe the limits on the other 
gains. 

 
• Simulate the system for 3.0 seconds. Be sure to use radians for the Model 205 

system! If the design constrains are not met, or the control effort hits a limit, 
redesign your controller (you might also try a lower input signal) 

 
• Compile the correct closed loop ECP Simulink driver, connect to the system, and 

run the system.  
 

• Use the Compare_DT1.m file (or a modification of it) to plot the results of both 
the simulation and the real system on one nice, neatly labeled graph. The results 
for the torsional systems must be displayed in degrees. You need to include this 
graph in your memo.  

 
 
Your memo should include 8 graphs ( 2 systems, 2 PI-D controllers/system, 2 I-PD 
controllers/system – remember you need to run the systems using two different sampling 
intervals …) 

 15


