ECE-520: Discrete-Time Control Systems
 Homework 2

Due: Thursday September 16 at the beginning of class

1) For impulse response $h(n)=\left(\frac{1}{5}\right)^{n} u(n)$ and input $x(n)=u(-n)$, show that the system output is $y(n)=\frac{5}{4} u(-n)+\frac{1}{4}\left(\frac{1}{5}\right)^{n-1} u(n-1)$ by
a) evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} x(n-k) h(k)$
b) evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} h(n-k) x(k)$
2) For impulse response $h(n)=\left(\frac{1}{3}\right)^{n-2} u(n-3)$ and input $x(n)=\left(\frac{1}{2}\right)^{-n} u(2-n)$, show that the system output is $y(n)=\frac{1}{5} 2^{n-2} u(5-n)+\frac{8}{5}\left(\frac{1}{3}\right)^{n-5} u(n-6)$ by
a) evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} x(n-k) h(k)$
b) evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} h(n-k) x(k)$
3) For the z-transform

$$
X(z)=\frac{3}{z-2}
$$

a) Show that, by multiplying and dividing by z and then using partial fractions, the corresponding discrete-time sequence is

$$
x(k)=-\frac{3}{2} \delta(k)+\frac{3}{2} 2^{k} u(k)
$$

b) By starting with the z-transform

$$
Y(z)=\frac{3 z}{z-2}
$$

and the z-transform properties, show that

$$
x(k)=32^{k-1} u(k-1)
$$

4) For impulse response $h(n)=\left(\frac{1}{2}\right)^{n-3} u(n-1)$ and input $x(n)=\left(\frac{1}{4}\right)^{n+1} u(n-2)$, use z-transforms of the input and impulse response to show the system output is $y(n)=\left[\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n-1}\right] u(n-3)$
5) For $h(n)=\left(\frac{1}{a}\right)^{n} u(-n)+a^{n} u(n)$ with $|a|<1$, using the two-sided z transform to show that

$$
H(z)=\frac{1}{1-a z}+\frac{1}{1-a z^{-1}}
$$

and the region of convergence is $|a|<|z|<\frac{1}{|a|}$
6) In class we derived the relation ships

$$
G(z)=\frac{r z[z \cos (\theta)-\gamma \cos (\beta-\theta)]}{z^{2}-2 \gamma \cos (\beta) z+\gamma^{2}}=\frac{A z^{2}+B z}{z^{2}+2 C z+\gamma^{2}} \leftrightarrow g(n)=r \gamma^{n} \cos (\beta n+\theta) u(n)
$$

with

$$
\beta=\cos ^{-1}\left(\frac{-C}{\gamma}\right), \theta=\tan ^{-1}\left(\frac{C A-B}{A \sqrt{\gamma^{2}-C^{2}}}\right), r=\sqrt{\frac{A^{2} \gamma^{2}+B^{2}-2 A B C}{\gamma^{2}-C^{2}}}
$$

a) Us the above formulas to find the impulse response $g(n)$ for $G(z)=\frac{z^{2}+0.5 z}{z^{2}+0.2 z+0.125}$.b) Compute $g(n)$ from part a for $n=0,1,2,3,4$ and then perform long division to verify that your answer to \mathbf{a} is correct for these terms
c) Determine the unit step response $y(n)$ for $G(z)=\frac{1}{z^{2}+0.1 z+4}$, by using the form

$$
\frac{Y(z)}{z}=\frac{1}{(z-1)\left(z^{2}+0.1 z+4\right)}=\frac{\alpha_{1}}{z-1}+\frac{\alpha_{2} z+\alpha_{3}}{z^{2}+0.1 z+4}
$$

Hint: α_{1} can be found using the cover-up method, α_{2} can be found by multiplying both sides by z and letting $z \rightarrow \infty$, and α_{3} can be found by substituting a convenient value for z, like $z=0$.
d) Compute $y(n)$ from part \mathbf{e} for $n=0,1,2,3,4$ and then perform long division to verify that your answer to \mathbf{e} is correct for these terms
7) Consider the following difference equation

$$
x(k+2)-4 x(k+1)+4 x(k)=f(k)
$$

Assume all initial conditions are zero.
a) Determine the impulse response of the system, i.e., the response $x(k)$ when $f(k)=\delta(k)$.
b) Determine $x(0), x(1), x(2), x(3)$, and $x(4)$ from your answer to \mathbf{a}. Compare this answer with the known values of $x(0)$ and $x(1)$. Using the difference equation compute $x(3)$ and $x(4)$ and compare these values to those in your solution.
c) Determine the step response of the system, i.e., the response $x(k)$ when $f(k)=u(k)$
d) Determine $x(0), x(1), x(2), x(3)$, and $x(4)$ from your answer to \mathbf{c}. Compare this answer with the known values of $x(0)$ and $x(1)$. Using the difference equation compute $x(3)$ and $x(4)$ and compare these values to those in your solution.
8) Consider the difference equation

$$
x(k+2)-5 x(k+1)+6 x(k)=f(k)
$$

where $f(k)=u(k)$, a unit step. Assume $x(0)=1$ and $x(1)=1$.
a) Determine the Zero Input Response (ZIR), $x_{\text {ZIR }}(k)$. This is the part of the solution $x(k)$ due to the initial conditions alone (assume the input is zero).
b) Determine the Zero State Response $(\mathrm{ZSR}), x_{Z S R}(k)$. This is the part of the solution $x(k)$ due to the input alone (assume all initial conditions are zero).
c) Find the total response $x(k)=x_{\text {ZIR }}(k)+x_{Z S R}(k)$
d) Find the transfer function and the impulse response.
e) Determine $x(0), x(1), x(2), x(3)$, and $x(4)$ from your answer to c. Compare this answer with the known values of $x(0)$ and $x(1)$. Using the difference equation compute $x(3)$ and $x(4)$ and compare these values to those in your solution.

