ECE-520: Discrete-Time Control Systems Homework 1

Due: Thursday September 9 at the beginning of class

- 1) From class we have the useful sum $S_N = \sum_{k=0}^{k=N} a^k = \frac{1-a^{N+1}}{1-a}$. Using this sum, and possibly a change of variables, show that
- **a)** $\sum_{k=0}^{k=N} \left(\frac{a}{b}\right)^k = \frac{b^{N+1} a^{N+1}}{b^N (b-a)}$
- **b**) $\sum_{k=M}^{k=N} a^k = \frac{a^M a^{N+1}}{1-a}$
- 2) Starting from $S_N = \sum_{k=0}^{k=N} a^k = \frac{1-a^{N+1}}{1-a}$, take derivatives of both sides to show that

$$\sum_{k=0}^{k=N} ka^k = \frac{Na^{N+2} - (N+1)a^{N+1} + a}{(1-a)^2}$$

3) For impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$ and input x(n) = u(n), show that the system output is

$$y(n) = 2 \left[1 - \left(\frac{1}{2} \right)^{n+1} \right] u(n)$$
 by

- a) evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$
- b) evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$

Note that this is the unit step response of the system.

4) For impulse response $h(n) = \delta(n) + 2\delta(n-2) + 3\delta(n-3)$ and input

$$x(n) = \left(\frac{1}{2}\right)^{n-1} u(n-2)$$
, determine the output $y(n)$ (this should be easy).

5) Show that $u(n) = \sum_{l=-\infty}^{l=n} \delta(l)$ and $u(n-k) = \sum_{l=-\infty}^{l=n} \delta(l-k)$

6) For impulse response
$$h(n) = \left(\frac{1}{3}\right)^{n-2} u(n-1)$$
 and input $x(n) = \left(\frac{1}{2}\right)^n u(n-1)$, show that the system output is $y(n) = 9 \left[\left(\frac{1}{2}\right)^{n-1} - \left(\frac{1}{3}\right)^{n-1}\right] u(n-2)$ by

- a) evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$
- b) evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$
- 7) For impulse response $h(n) = \left(\frac{1}{2}\right)^{n-3} u(n-1)$ and input $x(n) = \left(\frac{1}{4}\right)^{n+1} u(n-2)$, show that the system output is $y(n) = \left[\left(\frac{1}{2}\right)^n \left(\frac{1}{4}\right)^{n-1}\right] u(n-3)$ by
- a) evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$
- b) evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$