
ECE 497-3: Inverse Problems in Engineering
Homework #2

Due: Friday December 20, 2002

Motivation
In this homework, we will look at the singular value decomposition of a matrix as a method
for examining least squares problems. In this homework, the attatched Matlab routines will
do most of the work. You will need to set the “numeric format” (in the options window) to
“long” for this homework.

1) Consider the following linear system of equations

y =




−0.2042 0.0559 0.3715 −0.2077
0.1347 0.2208 0.5294 0.1336
0.4803 0.3889 0.6862 0.4670
0.6078 0.6088 1.2159 0.6081


 x

Using Matlab, compute y for xT = [1 1 1 1]. Then, using this y, compute x by determining
the inverse of the above matrix.

It turns out that for any matrix Z ∈ Rm×n we can always compute its singular value decom-
position

Z = USVT

where, U ∈ Rm×m and U is a unitary matrix (UT = U−1), V ∈ Rn×n and V is a unitary
matrix (VT = V−1), and S ∈ Rm×n. S is all zeros except for a submatrix, which will will
denote Σ, of size m×m or n×n (depending on whether m or n is smaller) in the upper left
corner. The entries in the submatrix Σ are called the singular values of the matrix and will
b e denoted σi for the ith singlular value. In general, σi ≥ σi+1, that is, the singular values
decrease as the mode number increases (this is important!) As you will see, these singular
values contain a great deal of information about the matrix (and what may be going wrong).

2) Lets assume that

x = Vα

y = Uβ

That is, x can be written as a linear combination of the columns of V

x = Vα

= [v1 v2 ... vn] α

= v1α1 + v2α2 + ... + vnαn

Since x ∈ Rn and the columns of V span Rn, we know such an expansion must exist. Simi-
larly, we must be able to represent y as a linear combination of the columns of U.
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Now assume we have our linear problem y = Zx.

Show that the singular value decomposition leads to

α = Σ−1β

(Note, if there are more αi than βi, the extra αi are set to zero. This just means that V
spans a larger space than U. Similarly if there are more βi than αi, the extra βi are set
to zero. This just means U spans a larger space than V.) This can be written in terms of
components as

αi = βi/σi

You may assume that S has full rank (.e., S−1 exists) for this derivation, even if it may not.

3) Now assume we have an overdetermined least squares solution

x̂ = (ZTZ)−1ZT y

with the assumptions above, and writing Z in terms of its singular value decompostion, show
that the solution of the overdetermined least squares problem

x̂ = (ZTZ)−1ZT y

again leads to
α = Σ−1β

or
αi = βi/σi

You may assume that S has full rank (.e., S−1 exists) for this derivation, even if it may not.

4) Now we need to get either the α, or, equivalently, the β. The answer is fairly simple.
Since we observe y and U is a unitary matrix, you should be able to show that

β = UT y

5) Now compute x using the singular value decomposition of Z. (The Matlab routine will
do this for you, it should be the same as in (1).)

6) Now assume we have a slight error in our measurement, a very likely thing in the “real”
world. The Matlab routine will add a small amount of noise to the observation vector. It
should usually change the y values by a few percent. Determine the new y when noise is
added, and compute a new estimate of x.

7) Are the estimates in (1) and (6) above close? Do these answers seem strange? Run your
program at least three times, with three different sets of noise and turn them
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in!

8) Now lets look at our orignal problem and what is going wrong. If there was no noise, then
we would have

y = β1u1 + β2u2 + β3u3 + β4u4

x =
β1

σ1

v1 +
β2

σ2

v2 +
β3

σ3

v3 +
β4

σ4

v4

However, since there is measurement error in y, which we will define as y + δy, we have
instead of the above,

y + δy = (β1 + δβ1)u1 + (β2 + δβ2)u2 + (β3 + δβ3)u3 + (β4 + δβ4)u4

x + δx =
β1 + δβ1

σ1

v1 +
β2 + δβ2

σ2

v2 +
β3 + δβ3

σ3

v3 +
β4 + δβ4

σ4

v4

or, the deviation from the true answer x is

δx =
δβ1

σ1

v1 +
δβ2

σ2

v2 +
δβ3

σ3

v3 +
δβ4

σ4

v4

Now, since by construction, the magnitude of the vi are one, and the errors in the observa-
tion are assumed to be reasonably small, we need to look at the sizes of the singular values
σi. As they get smaller, they will amplify the errors δβi more strongly. For our example
problem, determine the ratios δβi/σi.

9) Now what do we do with this newfound information? What we will try is called Trun-
cated singular value decomposition, and you do what the name implies. That is, only use the
eigenvector expansion for the first few terms (before the singular values become small), and
set the coefficients for all of the higher terms to zero. (Of course, since in general one does
not often actually know what the true answer is, this requires some experience and a close
examination of the relative sizes of the singular values.)

For our problem, compute x omitting first the last term (i.e. the one with the smallest
singular value), the last two terms, and the last three terms. Do your answers get better
than using all of the terms?

(10) Repeat the above steps (1,5,6,7,8,9) for the problem

y =




−0.0505 0.0683 0.1175 0.0538 0.1709
0.2215 0.1729 0.0005 0.2794 0.2963
0.4663 0.4675 −0.0623 0.4237 0.3403
−0.1871 0.0701 0.2650 0.0460 0.3136
0.2109 0.0203 0.5130 −0.0603 0.0717




x

To Hand In: Hand in your code for both parts (both matrices) as well as the outputs (3
outputs for each case). Also include some discussion of your results (just a paragraph).
You will be partially graded on neatness and organization! Think about your results. We
will be using SVD more in the future.
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