ECE 497-3: Inverse Problems in Engineering

Homework \#1
Due: Friday December 13, 2002
For problems 1-5, let

$$
\underline{a}=\left[\begin{array}{l}
a \\
b
\end{array}\right], \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

and show the following:

1) for $f(\underline{x})=\underline{a}^{T} \underline{x}, \frac{d f}{d \underline{x}}=\underline{a}$
2) for $f(\underline{x})=\underline{x}^{T} \underline{a}, \frac{d f}{d \underline{x}}=\underline{a}$
3) for $f(\underline{x})=A \underline{x}, \frac{d f}{d \underline{x}}=A^{T}$
4) for $f(\underline{x})=A^{T} \underline{x}, \frac{d f}{d \underline{x}}=A$
5) for $f(\underline{x})=\underline{x}^{T} A \underline{x}, \frac{d \underline{f}}{d \underline{x}}=\left(A+A^{T}\right) \underline{x}$
6) The error vector \underline{e} between observation vector \underline{d} and estimate of the input $\underline{\hat{x}}$ is $\underline{e}=\underline{d}-A \underline{\hat{x}}$. We want to weight the errors by a matrix R , where R is symmetric $\left(R=R^{T}\right)$. Find $\underline{\hat{x}}$ to minimize $\underline{e}^{T} R \underline{e}$. (This is a weighted least squares.)
7) Show that any matrix A can be written as the sum of a symmetric matrix and a skew symmetric matrix. That is,

$$
\begin{aligned}
A & =R+Q \\
R & =R^{T} \\
Q & =-Q^{T}
\end{aligned}
$$

Determine R and Q.
8) Assume we expect a process to follow the following equation

$$
y(t)=\frac{1}{c t+d \sqrt{t}}
$$

Assume we measure the $y(t)$ at various times t :

t	$y(t)$
1.0	0.30
2.0	0.21
3.0	0.14
4.0	0.12
5.0	0.11
6.0	0.09

a) Determine a least squares estimate of the parameters c and d.
b) Estimate the value of $y(t)$ at $t=2.5$.
c) Suppose we believe all measurements made before time $t=3.5$ are twice as reliable as those made later. Determined a reasonable weighted least squares estimated of c and d.
9) Assume we expect a process to follow the following equation

$$
\gamma(x)=\epsilon e^{\beta x}
$$

Assume we measure the $\gamma(x)$ at various locations x :

x	$\gamma(x)$
0.0	2.45
0.1	2.38
0.4	2.30
2.0	1.40
4.0	0.70

a) Determine a least squares estimate of the parameters ϵ and β. (Hint: Try logarythms...)
b) Estimate the value of $\gamma(x)$ at $x=3.0$.

