ECE-420: Discrete-Time Control Systems
 Homework 3

Due: Friday September 25 at the beginning of class

1) Consider the continuous-time plant with transfer function

$$
G_{p}(s)=\frac{1}{(s+1)(s+2)}
$$

We want to determine the discrete-time equivalent to this plant, $G_{p}(z)$, by assuming a zero order hold is placed before the continuous-time plant to convert the discrete-time control signal to a continuous time control signal.

Show that if we assume a sampling interval of T, the equivalent discrete-time plant is

$$
G_{p}(z)=\frac{z\left(0.5-e^{-T}+0.5 \mathrm{e}^{-2 T}\right)+\left(0.5 e^{-T}-e^{-2 T}+0.5 e^{-3 T}\right)}{\left(z-e^{-T}\right)\left(z-e^{-2 T}\right)}
$$

Note that we have poles were we expect them to be, but we have introduced a zero in going from the continuous time system to the discrete-time system.
2) In this problem assume the feedback configuration shown below.

a) Assume

$$
H(z)=z^{-1}, G_{p}(z)=b_{0}^{p}, G_{c}(z)=\frac{b_{0}^{c} z+b_{1}^{c}}{z-1}
$$

If the plant is equal to 3 and we want all of the closed loop poles at -0.5 , show that the controller and closed loop transfer functions are $G_{c}(z)=\frac{\frac{2}{3} z+\frac{1}{12}}{z-1}, G_{o}(z)=\frac{z(2 z+0.25)}{z^{2}+z+0.25}$
b) Assume $H(z)=1, G_{c}(z)=\frac{b_{0}^{c} z+\mathrm{b}_{1}^{c}}{z-1}, G_{p}(z)=\frac{b_{0}^{p}}{z+a_{1}^{P}}$ If the plant is equal to $\frac{2}{z-0.5}$ and the closed loop poles are at -0.5 and -0.333 , show that the controller and the closed loop transfer function are

$$
G_{c}(z)=\frac{1.167 z-0.167}{z-1}, G_{o}(z)=\frac{2.333 z-0.333}{z^{2}+0.833 z+0.167}
$$

3) Assume the following feedback configuration

If $H(z)=z^{-1}, G_{c}(z)=\frac{c(z+a)}{z+b}, G_{p}(z)=\frac{2}{z+1}$ determine the parameters a, b, and c so all of the closed loop poles are at 0.5 .

Hint: $(z-0.5)^{3}=z^{3}-1.5 z^{2}+0.75 z-0.125$
4) Assume the following feedback configuration

If $H(z)=z^{-1}, G_{c}(z)=\frac{c(z+a)}{(z-1)(z+b)}, G_{p}(z)=\frac{2 z}{z+1}$ determine the parameters a, b, and c is the desired closed loop poles are roots of the equation $\Delta(z)=z^{3}+d_{1} z^{2}+d_{2} z+d_{3}$
5) Prove or disprove the following claims: if u, v, and w are linearly independent vectors, then so are
a) $u, u+v, u+v+w$
b) $u+2 v-w, u-2 v-w, 4 v$
c) $u-v, v-w, w-u$
d) $-u+v+w, u-v+w,-u+v-w$

Note: You must do this for arbitrary vectors. Do Not assume u, v, and w are specific vectors.
6) Determine the ranks of the following matrices. Do not use a calculator or computer, look for linearly independent columns or rows.
a) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
b) $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
c) $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 0 \\ 1 & 2\end{array}\right]$
d) $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 3 & 1 & 2\end{array}\right]$
e) $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & -1\end{array}\right]$
f) $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

Answers (scrambled): 3, 2, 2, 1, 2, 2
7) For the following matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 0 & 2
\end{array}\right]
$$

a) Find a set of vectors that form a basis for the null space of A.
b) Is the vector $\underline{n}=\left[\begin{array}{llll}2 & 2 & -2 & 2\end{array}\right]^{T}$ in the null space of A ? That is, can you represent this vector as a linear combination of your basis vectors?
8) For the following matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 2 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

a) Find a set of vectors that form a basis for the null space of A.
b) Is the vector $\underline{n}=\left[\begin{array}{llll}2 & 6 & -2 & -1\end{array}\right]^{T}$ in the null space of A ? That is, can you represent this vector as a linear combination of your basis vectors?
9) For the following matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & 1 \\
2 & 1 & 3 & 5
\end{array}\right]
$$

a) Find the rank of A (the number of linearly independent rows or columns).
b) Determine two vectors that span the null space of A.

