## ECE-420 Exam 1 Fall 2015

Calculators and Laptops cannot be used. You must show your work to receive credit.

| Problem 1 | /10 |
| :---: | :---: |
| Problem 2 | /15 |
| Problem 3 | /12 |
| Problem 4 | /15 |
| Problem 5 | /8 |
| Problem 6 | /20 |
| Problem 7 | /20 |

Total $\qquad$

1a) Use long division to determine the first three nonzero terms in the impulse response for the following transfer function $H(z)=\frac{z+1}{z^{2}+z+1}$

1b) Assume a system has impulse response $h(n)=(0.5)^{n} u(n)$ Determine the output if the input is $x(n)=2 \delta(n)-3 \delta(n-2)$
$\qquad$
2) Assume we have a process which we expect to be able to model as $g(t)=\alpha t+\beta$. We perform an experiment and determine values for $g(t)$ for a number of different values of $t$, so we have the values

$$
\begin{array}{ll}
t_{0}, & g\left(t_{0}\right) \\
t_{1}, & g\left(t_{1}\right) \\
t_{2}, & g\left(t_{2}\right) \\
t_{3}, & g\left(t_{3}\right) \\
t_{4}, & g\left(t_{4}\right)
\end{array}
$$

We want to estimate $\alpha$ and $\beta$ using a least squares type of approach, with the model $z=A w$. Describe how you would do this. Be sure in your description, to indicate what the $z, w$, and $A$ are in terms of the values given $t_{i}, g\left(t_{i}\right)$
$\qquad$
3) Determine the rank of each of the following matrices (just write the number):

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
0 & 2 & 3
\end{array}\right]}
\end{aligned}
$$

$\qquad$
$\qquad$
4) Consider the discrete-time state variable system,

$$
x(n+1)=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] x(n)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(n)
$$

Assuming we start at the origin (the point 0,0 ) after 3 time steps we have

$$
x(3)=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
u(0) \\
u(1) \\
u(2)
\end{array}\right]=A u
$$

a) If the input is $u^{T}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ determine $x(3)$
b) Find a unit vector in the null space of the matrix $A$
c) Is the input vector in step (a) the input with the smallest magnitude to go from the origin to the point $x(3)$ ? Explain your answer.
5) Use a Lagrange multiplier to find the point on the plane $2 x+4 y-6=0$ nearest the origin
$\qquad$
6) Consider the overdetermined system $A x=b$. Rather than just performing a normal least squares solution, we want to penalize the magnitude of the solution by some weighting scalar $\mu$. Thus we want to find the value of $x$ that minimizes

$$
H=\|A x-b\|^{2}+\mu\|x\|^{2}=(A x-b)^{T}(A x-b)+\mu\left(x^{T} I x\right)
$$

a) Show that the solution to the above minimization problem is given by $x=\left(A^{T} A+\mu I\right)^{-1} A^{T} b$
b) Assume now we compute the singular value decomposition of $A, A=U S V^{T}$. Recall that $U$ and $V$ are unitary matrices, so $U^{T} U=V^{T} V=I$. This means that $U^{-1}=U^{T}$ and $V^{-1}=V^{T} . S$ is a diagonal matrix with elements $\sigma_{i}$ on the diagonal (assume $S$ has full rank and is invertible). Assume that we can write $b=U \beta$ and $x=V \alpha$. Determine how $\alpha$ and $\beta$ are related. Hint: it may be helpful to write $I=V I V^{T}$

Hints: $\mu$ is not a Lagrange multiplier, there are no Lagrange multipliers in this problem. You can do both parts of this problem independently.

Cultural Point: This technique is known as zero order Tikhonov regularization.
$\qquad$ Mail Box
7) For impulse response $h(n)=\left(\frac{1}{2}\right)^{n} u(n-2)$ and input $x(n)=\left(\frac{1}{2}\right)^{-n} u(-\mathrm{n}+1)$, the system output can be written as $A(n) u(n-3)+B(n) u(2-n)$. Determine an expression for both $A(n)$ and $B(n)$. You do not need to simplify your expression but you must evaluate all sums. For my sanity (not that you care), evaluate the convolution using the form $y(n)=\sum_{k=-\infty}^{k=\infty} h(n-k) x(k)$

