
1

ECE-420 Project 0: Introduction to the Embedded System Toolbox
Due: Friday September 11 at the beginning of class (e-mail me a memo)

In this project you will simulate a few discrete-time systems in both Matlab and Simulink to see how the

embedded systems toolbox works. You will need to download files from the class website for this.

Mathematical Background: Consider a simple discrete-time transfer function with input ()U z and

output ()Y z ,

1 2

0 1 2

1 2

1 2

(
()

U() 1
)p

b b z b zY z
G z

z a z a z

Cross multiplying we get

1 2 1 2

1 2 0 1 2() () () () ())(U Uz Y z z Y z bY z a a z b z z bU z z

In the time-domain this becomes

1 2 0 1 2() (1) (2) () (1) (2)y n a y n a y n b n b bu u n u n

In what follows it is important to continually think about this difference equation and how it is related to

the transfer function.

Part A

Open the files openloop_DE_A.slx and openloop_driver.m. These files generate both a Matlab and a

Simulink simulation of the unit step response for the discrete-time transfer function

1

1

1

0.
()

1 0.88
p

z

z
G

z
z

In the time domain this corresponds to the difference equation () 0.8 (1) (1)y n y n u n

Run openloop_driver.m, you should get the graph shown in Figure 1, however, it may take a while.

This figure shows the results from the Matlab and Simulink simulations are identical, which is a good

way to check your answers.

2

 .

Figure 1. Open loop response of the system.

2) Now open up openloop_DE_A.slx (double click on it). It should look like Figure 2. We will be going

through a number of the elements in this model so you can see how everything works.

Figure 2. openloop_DE_A.slx

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

y
 v

a
lu

e

Simulink

Matlab

3

Starting at the left of the model (Figure 2), the input goes into a Delay Block (Tapped Delay 1). If you

click on this delay block you will get the parameter block shown in Figure 3. This figure also shows

what many of the parameters mean.

Figure 3. Parameter block for first delay, with explanations.

The output of this block is a scalar or a column vector. Figure 4 indicates the structure of this vector and

how to access elements of the vector. This is important to remember!

Initial Conditions are 0

Set the sample time. An

entry of -1 means to inherit

the sample time.

We need only one delay

Order the output with the

newest element first

Include the current input in

the output vector?

4

_

(1) (1)

(2) (2)

(3) (3)

() ()

_

The order o

If Include current input in How to access the
output vector elments of u in

u n u
newest

u n u

u n u

oldest
u n N u N

u in

is not checked

() (1)

(1) (2)

(2) (3)

() (1)

f the elements if
Order output vector starting
with is selected

If Include current input in How to access t
output vector

u n u

u n u

u n u

u n N u N

Newest

is checked _

The order of the elements if
Order output vector startinghe
with is selectedelments of u in

newest

oldest

 Newest

Figure 4. Output structure of a delay block. In the top row the current input is not included in the

output. For both rows we assume there are N delays and the elements are in the newest first order. The

middle vectors show how to access elements of the vector.

Now click on the plant (the large block in the center of Figure 2) and you will get the innocent looking

piece of code for implementing a discrete-time transfer function shown in Figure 5. There are two things

“passed” to this function: y_in, and u_in.

Figure 5. Code inside the plant block for implementing a discrete-time transfer function.

Click on the Simulink and then the Edit Data icon, as shown in Figure 6, to access the variables. (Note

that you may not need to click on the Simulink tab.)

5

Figure 6. Accessing the “passed” items to this block via the Edit Data icon.

Once you click on the Edit Data icon, you will get a window like that shown in Figure 7.

Figure 7. Modifying variables and parameters

If you select one of the variables (such as y_in), you will get a figure like that in Figure 8. Click in the

left-half plane to get back to the previous window.

Select
Simulink

Select
 Edit Data

Variable Name

Input/Output

Port

Add Data (new

variables or

parameters)

This can help debug code

6

Figure 8. Information on simulation variables.

Referring to Figures 7 and 8,

 If the scope is a parameter, then you should not expect it to change as the simulation is running.

If the scope is an input or output, then you should expect it to change as the simulation is

running, such as y_in, r_in, and y_out.

 The port indicates the order in which the variable will appear in the left (input) or right (output)

side of the block. For this simulation, the port of y_in is one and the port of u_in is two, and

this is reflected in how they are placed on the left of the plant block (See Figure 2).

 Most likely you will be changing the Size of the variables more than anything else.

 Add Data allows you to add new variables and parameters.

Scope is
Input/Output/Variable

Size of the
variable

Cut

Delete

Click in this
pane to get
back to the

previous
window You can extend this pane to see more

information on your variables

7

Part B

Copy openloop_DE_A.slx to openloop_DE_B.slx (save Openloop_DE_A as openloop_DE_B) and

modify code as needed to determine the step response of the discrete-time plant

1

1

1 0.2
()

1 0.8
p

z
z

z
G

Assume a sampling interval of 0.1 seconds and run the simulation for 3 seconds. You should start by

writing out the appropriate difference equation. You will then have to

 modify the first delay bock,

 modify the plant block so the size of u_in is correct (make a column vector)

 modify the code inside the plan block

 change the transfer function in the Matlab driver file

 change the Simulink file the Matlab driver file invokes

If Matlab complains that there is an error in the Simulink model, it is often useful to click on the

Simulink block in question and then select View Report (See Figure 6.). This will often help find the

errors.

When you run the Matlab driver file you should get a plot like that shown in Figure 9. Include your plot

in your memo.

Figure 9. Step response for

1

1

1 0.2
()

1 0.8
p

z
z

z
G

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

Time

y
 v

a
lu

e

Simulink

Matlab

8

Part C

Copy openloop_DE_B.slx to openloop_DE_C.slx and modify the code (both Matlab and Simulink) as

needed to determine the step response of the discrete-time plant

1 2

1 2

00.2
()

1 0.

.1

0 61 .
p

z
G

z

z
z

z

Assume a sampling interval of 0.1 seconds and run the simulation for 2 seconds. You should start by

writing the difference equation in the time domain. You will need to change both of the delay blocks and

the plant block (both the code and the dimensions of the signals.) You should get a plot like that shown

in Figure 10. Include your plot in your memo.

Figure 10. Step response for

1 2

1 2

00.2
()

1 0.

.1

0 61 .
p

z
G

z

z
z

z

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

y
 v

a
lu

e

Simulink

Matlab

9

Part D

Now we want to implement a controller in addition to our plant. As with our plants, it is easiest to get

everything correct if you first write out a difference equation, and then figure out what you need in the

delays and sizes of variables.

Copy your Simulink file openloop_DE_A.slx to closedloop_DE_A.slx. Your plant for part A should

already be modelled correctly, and now we want to implement the integral controller
0.04

()
1

cG z
z

. We

also want a delay between the output and the input, so 1()H z z (this is a simple delay). To implement

the controller, again write out the difference equation in the time domain, and then modify

closedloop_DE_A.slx so it looks something like that in Figure 11. Note that the input is now rt, not ut,

and the input and output variables in the controller have different names than for the plant. It is

probably easiest to copy your plant and then make it a controller.

Figure 11. Closed loop system for plant A.

If you run the program closedloop_driver.m with a sampling interval 0.1 seconds and your Simulink is

working properly you should get a figure like that in Figure 12. Include your plot in your memo.

10

Figure 12. Result of Matlab and Simulink simulations for system A with an integral controller.

Part E

Copy your Simulink file openloop_DE_B.slx to closedloop_DE_B.slx. Your plant for part B should

already be modelled correctly, and now we want to implement the proportional +integral controller

0.115(z 0.547)
()

1
c z

z
G

. We also want a delay between the output and the input, so 1()H z z (this is

a simple delay). You may also want to copy parts of your model from closedloop_DE_A.slx. To

implement the controller, again write out the difference equation in the time domain, and then modify

closedloop_DE_B.slx so it again looks something like that in Figure 11 (though the delays may be

different). After you have modified this file and the Matlab driver file (with a sampling interval of 0.1

sec), your results should look like those in Figure 13. Include your plot in your memo.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

y
 v

a
lu

e

Simulink

Matlab

11

Figure 13. Result of Matlab and Simulink simulations for system B with a

 proportional plus integral controller.

Part F

Copy your Simulink file openloop_DE_C.slx to closedloop_DE_C.slx. Your plant for part C should

already be modelled correctly, and now we want to implement the proportional +integral+derivative

controller
21.0631(0.316 0.199)

()
(1)

c

z z
G z

z z

. We also want a delay between the output and the input,

so 1()H z z (this is a simple delay). To implement the controller, again write out the difference

equation in the time domain, and then modify closedloop_DE_C.slx so it again looks something like

that in Figure 11 (though the delays may be different). After you have modified this file and the Matlab

driver file (with a sampling interval of 0.1 sec), your results should look like those in Figure 14. Include

your plot in your memo.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time

y
 v

a
lu

e

Simulink

Matlab

12

Figure 14. Result of Matlab and Simulink simulations for system C with a

 proportional plus integral plus derivative controller.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

y
 v

a
lu

e

Simulink

Matlab

