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ECE-420: Discrete-Time Control Systems 

Homework 7 

 

Due: Friday October 31 in class 

Exam 2: Friday October 31 

 

1) For the following matrix 

1 0 2 1

1 1 0 2
A

 
  
 

 

a) Find a set of vectors that form a basis for the null space of A . 

 

b) Is the vector  2 2 2 2
T

n   in the null space of A ? That is, can you represent this vector as a linear 

combination of your basis vectors? 

 

2) For the following matrix 

1 0 1 0

0 1 2 2

1 0 1 0

A

 
 


 
  

 

a) Find a set of vectors that form a basis for the null space of A . 

 

b) Is the vector  2 6 2 1
T

n    in the null space of A ? That is, can you represent this vector as a linear 

combination of your basis vectors? 

 

3) For the following matrix 

1 0 1 2

0 1 1 1

2 1 3 5

A

 
 


 
  

 

a) Find the rank of A (the number of linearly independent rows or columns). 

b) Determine two vectors that span the null space of A. 

 

4) For the discrete-time state variable system given by 

 

 

0 1 0
( 1) ( ) ( )

1 1 1

( ) 1 0 ( )

x k x k u k

y k x k

   
     

   



 

 

a) Assuming state variable feedback, use Akermann’s formula to find a state variable feedback matrix K  to 

place the closed loop poles at 0 and 0.1. 

 

b) Use Ackermann’s formula to find a state variable feedback matrix K  that will result in deadbeat control. 

 

c) Assuming state variable feedback, use the direct eigenvalue assignment method to  find a state variable 

feedback matrix K  to place the closed loop poles at 0 and 0.1. 
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5) For the discrete-time state variable system given by 

 

 

0.1 0 0.1
( 1) ( ) ( )

0.2 0.1 0

( ) 1 1 ( )

x k x k u k

y k x k

   
     

   



 

a) Assuming state variable feedback, use Ackermann’s formula to find a state variable feedback matrix K  to 

place the closed loop poles at 0 and 0.1. 

 

b) Use Akermann’s formula to find a state variable feedback matrix K  that will result in deadbeat control. 

 

c) Assuming state variable feedback, use the direct eigenvalue assignment method to find a state variable 

feedback matrix K  to place the closed loop poles at 0 and 0.1. 

 

 

6) For the discrete-time state variable system given by 

 

0.1 0.2 0.1 0.1
( 1) ( ) ( )

0.2 0.1 0.1 0

1 0
( ) ( )

0 1

x k x k u k

y k x k

   
     

   

 
  
 

 

 

Assuming state variable feedback,  use the direct eigenvalue placement method to find two different  state 

variable feedback matrices K  to place the closed loop poles at -0.1 and -0.2. 

 

7) In this problem we will explore a form or writing the state equations that makes determining the required 

state variable feedback coefficients easier to determine. This form is call the controllable cannonical form. We 

will restrict ourselves to a third order system for simplicity. (Note that there is also an observable canonical 

form, and we do similar things with that to place observer poles. 

 

a) Consider the following state variable model, 

 
3 2 1

3 3 0 2 2 0 1 1 0 0

0

( ) 0 ( )

0 1 0

(

1

(t)

) 0 0

)

1

( )(

x t

a a a

a b a b

x t u t

y b b a b x tb ut b

   
   


   
      

   



  



 

 

Show that (feel free to use Maple on this part) the transfer function for this system is  

 
3 2

0 1 2 3

3 2

1 2 3

b( )
( )

( )
p

b s s b s bY s
G s

U s s a s a s a

  
 

  
  

 

So the characteristic polynomial is 3 2

1 2 3( )s s a s a s a     . Note that is it very easy to determine the 

characteristic polynomial coefficients from the A matrix. Remember that the characteristic polynomial is given 

by det( ) ( )sI A s    



 3 

 

b) Consider now introducing state variable feedback, so  1 2 3( ) ( ) ( )u t Kx t k k xk t    . Show that the 

characteristic equation is now given by  

 
3 2

1 3 2 2 3 1( ) ( ) ( ) ( )s s a k s a k s a k         

 

If we want the characteristic equation for closed loop poles 1 2,   and 3  to be given by  

 
3 2

1 2 3 1 2 3( ) )( )( ( )s s s s s ss             

 

Then it should be pretty easy to determine what we want the feedback gain matrix (vector) K to be.  

 

At this point it should be pretty clear that if a system is written in controllable canonical from than it is pretty 

easy to determine the state variable feedback gains. However, there are very few systems that can be written in 

this way that have physically meaningful states, so this looks like something of only academic value. However, 

with a little work, we can transform a system to this form, and that is what much of the remainder of this 

problem deals with. 

 

For our (3rd order system) we can write the controllability matrix as 2M B AB A B     and the characteristic 

polynomial is 3 2

1 2 3( )s s a s a s a     . 

c) Show that we can write

3

1

2

0 0

1 0

0 1

a

AM M a

a

 
 

 
 
  

  

Hint: on the right hand side, use the Cayley-Hamilton Theorem and the characteristic polynomial to write 3A in 

terms of lower powers of A . 

This means that 

3

1

2

1

0 0

1 0

0 1

AM

a

M a

a



 
 


 
  





 

d) Now let’s define 

2 1

1

1

1 0

1 0 0

a a

W a

 
 


 
  

 andT MW . Show that 1

3 2 1

0 1 0

0 0 1AT

a a a

T  

 

 
 
 
  

 

Hint: After a little work you end up needing to show that 

3

2

1 3 2 1

0 0 0 1 0

1 0 0 0 1

0 1

a

a W W

a a a a

   
   

 
   
         

  

e) Show that 1

0

0

1

T B

 
 
 
  

 or, equivalently, 

0

0

1

B T

 
 


 
  

 

At this point we have most of the tools we need, now we just need to put everything together. 

 

f) Consider the state variable model  
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( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 

 
 

Let’s define a new vector ˆ( )x t  where ˆ( ) ( )x t Tx t . We can rewrite the first equation in the form 

 
ˆ ˆˆ ˆ( ) ( ) ( )x t Ax t Bu t   

What are the Â and B̂ matrices, in terms of other matrices we have defined?  

 

Note that we are really just doing a change of basis, and that now our first equation is in controllable canonical 

form. 

 

g) Let’s now assume that we have state variable feedback, so ˆˆ ˆ( ) ( ) ( ) ( )u t Kx t KTx t Kx t       where 

 3 2 1K̂ KT     . Show that the characteristic equation for this system is now

3 2

1 1 2 2 3 3( ) ( ) ) (( )s s a s a s a         . 

 

h) If we wanted the closed loop characteristic equation to be  

 
3 2

1 2 3 1 2 3( ) ( )( )( )s s s s s s s              

 

how should we determine the 1 2,   and 3 ? 

 

i) Show that our state variable feedback gain is then given by 

 

  1

2 13 2 13a aK Ta       

 

Note that we do not need to transform the system to determine the ia , we only need to determine the 

characteristic equation of the original system. Now for some practice. 

 

j) Consider the system described by 
1 1 1

() ( )
1 2 1

( )x tx tt u
   

    
   

. Determine the state feedback gain so the 

closed loop poles are at -1 and -2. Answer:  1 7K   . 

Hint: In this case 
1 1

1 0

a
W

 
  
 

   

k) Consider the system described by 
1 0 1

() ( )
2 3 0

( )x tx tt u
   

    
   

. Determine the state feedback gain so the 

closed loop poles are at 21 j  . Answer:  6 10K   

 

 

Finally, although this method was derived in the continuous-time domain, the same basic approach applies in 

the discrete-time domain (just replace s  with z ) 
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8) The one degree of freedom discrete –time Simulink model DT_sv1.mdl implements a state variable model 

with state feedback. This model uses the Matlab code DT_sv1_driver.m to drive it. Both of these programs are 

available on the course website. The blue and yellow blocks represent the model of the system which would be 

replaced with the ECP driver/real system if we had a lab. Note that the Matlab driver program assumes a one 

unit delay between the input and output. 

 

a) Load the continuous time one degree of freedom torsional state variable description, 

bobs_1dof_model205.mat. The program will allow you to change the sampling rate if you need to. 

 

b) Modify the Matlab code (the poles and the place command) to place the poles of the closed loop system 

in such a way so that for a 15 degree step input: 

 the settling time for your system is less than 1 s 

 the percent overshoot for your system is less than 20% 

 the control effort does not hit a limiter (does not saturate) 

 the steady state error is zero 

 

c) Simulate the system and turn in your graphs. Try at least two different sampling rates (do not make the 

sampling interval less than 0.01) so you can see how the system responds as the sampling rate is increased, 

and how the control effort is usually increased as the sampling interval is decreased. 

 

d) Modify the Matlab code so your system has deadbeat response, if possible. You may need to use the 

acker command instead of place to do this. You may have to increase the sampling interval for this to 

work. Turn in your graphs. 

 

9) Copy  DT_svl.mdl  and  DT_sv1_driver.m to DT_sv2.mdl and DT_sv2_driver.m, respectively, and then 

 modify the new files to  work with a two degree of freedom system. All of the states except the last  

(delayed input) state must be plotted, as well as the control effort and the output state (y). You should use 

 subplot(3,2) so each state has its own plot. Assume we want to control the position of the second disk (You 

 may have to change the C matrix to do this.) You will need to modify both the initial conditions on the delay 

 block, and you will need 5 states output from the demux (x1, x1_dot, x2, x2_dot, and delayed u). Then 

 

a) Load the continuous time two degree of freedom torsional model, bobs_2dof_model205.mat. 

 

b) Modify the Matlab code (the poles and the place command) to place the poles of the closed loop 

system in such a way so that for a 15 degree step input, for the first disk: 

 the settling time for your system is less than 1 s 

 the percent overshoot for your system is less than 20% 

 the control effort does not hit a limiter (does not saturate) 

 the steady state error is zero 

Simulate the system and turn in your graph. 

 

c) If you do not like your response, you may change the sampling interval, but don’t make the sampling 

interval smaller than 0.01 seconds. 

 

d) Repeat part b (and c, if necessary) to control the position of the second disk. Turn in your graph. 

 

e) Modify the Matlab code so your system has deadbeat response, if possible. You may need to use the acker 

 command instead of place to do this. You may control the position of either disk. Turn in your graph. 


