ECE-420: Discrete-Time Control Systems

Homework 1
Due: Friday September 12 at the beginning of class

1) From class we have the useful $\operatorname{sum} S_{N}=\sum_{k=0}^{k=N} a^{k}=\frac{1-a^{N+1}}{1-a}$. Using this sum, and possibly a change of variables, show that
a) $\sum_{k=0}^{k=N}\left(\frac{a}{b}\right)^{k}=\frac{b^{N+1}-a^{N+1}}{b^{N}(b-a)}$
b) $\sum_{k=M}^{k=N} a^{k}=\frac{a^{M}-a^{N+1}}{1-a}$
2) Starting from $S_{N}=\sum_{k=0}^{k=N} a^{k}=\frac{1-a^{N+1}}{1-a}$, take derivatives of both sides to show that

$$
\sum_{k=0}^{k=N} k a^{k}=\frac{N a^{N+2}-(N+1) a^{N+1}+a}{(1-a)^{2}}
$$

3) For impulse response $h(n)=\left(\frac{1}{2}\right)^{n} u(n)$ and input $x(n)=u(n)$, show that the system output is $y(n)=2\left[1-\left(\frac{1}{2}\right)^{n+1}\right] u(n)$ by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} x(n-k) h(k)$
Note that this is the unit step response of the system.
4) For impulse response $h(n)=\delta(n)+2 \delta(n-2)+3 \delta(n-3)$ and input
$x(n)=\left(\frac{1}{2}\right)^{n-1} u(n-2)$, determine the output $y(n)$ (this should be easy).
5) Show that $u(n)=\sum_{l=-\infty}^{l=n} \delta(l)$ and $u(n-k)=\sum_{l=-\infty}^{l=n} \delta(l-k)$
6) For impulse response $h(n)=\left(\frac{1}{3}\right)^{n-2} u(n-1)$ and input $x(n)=\left(\frac{1}{2}\right)^{n} u(n-1)$, show that the system output is $y(n)=9\left[\left(\frac{1}{2}\right)^{n-1}-\left(\frac{1}{3}\right)^{n-1}\right] u(n-2)$ by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} h(n-k) x(k)$
7) For impulse response $h(n)=\left(\frac{1}{2}\right)^{n-3} u(n-1)$ and input $x(n)=\left(\frac{1}{4}\right)^{n+1} u(n-2)$, show that the system output is $y(n)=\left[\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n-1}\right] u(n-3)$ by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} x(n-k) h(k)$
8) For impulse response $h(n)=\left(\frac{1}{5}\right)^{n} u(n)$ and input $x(n)=u(-n)$, show that the system output is $y(n)=\frac{5}{4} u(-n)+\frac{1}{4}\left(\frac{1}{5}\right)^{n-1} u(n-1)$ by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} h(n-k) x(k)$
9) For impulse response $h(n)=\left(\frac{1}{3}\right)^{n-2} u(n-3)$ and input $x(n)=\left(\frac{1}{2}\right)^{-n} u(2-n)$, show that the system output is $y(n)=\frac{1}{5} 2^{n-2} u(5-n)+\frac{8}{5}\left(\frac{1}{3}\right)^{n-5} u(n-6)$ by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} h(n-k) x(k)$
