Name______ Mail Box _____

ECE-420 Exam 1 Fall 2012

Calculators can only be used for simple calculations. Solving integrals, differential equations, systems of equations, etc. does not count as a simple calculation.

You must show your work to receive credit.

Problem 1	/25
Problem 2	/25
Problem 3	/10
Problem 4	/20
Problem 5	/20

Total _____

- 1) For impulse response $h(n) = \left(\frac{1}{2}\right)^{n-1} u(n-2)$ and input $x(n) = \left(\frac{1}{3}\right)^{n+1} u(n)$
- a) Determine H(z)
- b) Determine X(z)
- c) Assume $Y(z) = z^{-1}G(z)$, determine g(n) and then y(n)

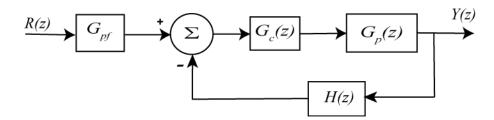
Name Mail Box

- 2) Consider the difference equation y(n+1) 2y(n) = x(n) with the initial condition $y(0) = \frac{1}{2}$
- a) Assuming the input is a unit step function, determine the zero input response (ZIR) and the zero state response (ZSR)
- b) Determine an expression for the system output
- c) Use the difference equation to compute y(0), y(1), and y(2)
- d) Compare the values from part c with the values you compute from your answer to part b

Name	Mail Box

3) Use long division to determine the first three nonzero terms in the impulse response for the following transfer function $H(z) = \frac{z+1}{z^2+2z+2}$

4) Assume the following feedback configuration



If $H(z) = z^{-1}$, $G_c(z) = \frac{az - b}{z - 1}$, $G_p(z) = 2$ determine the parameters a and b so all of the closed loop poles are at 0.5.

5) For impulse response $h(n) = \left(\frac{1}{2}\right)^{n-1} u(n-1)$ and input $x(n) = \left(\frac{1}{3}\right)^{1-n} u(1-n)$, the system output can be written as A(n)u(n-3)+B(n)u(2-n). Determine an expression for A(n) or B(n). You do not need to simplify your expression.

Name	Mail Box

Name	Mail Box