\qquad Mailbox \qquad

ECE-320,

Quiz \#4

For your ease, assume the form of convolution $y(n)=\sum_{k=-\infty}^{k=\infty} x(k) h(n-k)$ in all of the following problems.

1) The finite summation $S_{N}=\sum_{k=0}^{N} a^{k}$ is equal to
a) $\frac{1-a^{N}}{1-a}$
b) $\frac{1-a^{N-1}}{1-a}$
c) $\frac{1-a^{N+1}}{1-a}$
d) $\frac{1+a^{N+1}}{1-a}$
e) none of these
2) The finite summation $S=\sum_{k=-1}^{N+2} a^{k}$ is equal to
a) $a^{-1} \frac{1-a^{N+3}}{1-a}$
b) $a^{1}\left(\frac{1-a^{N+4}}{1-a}\right)$
c) $a^{-1}\left(\frac{1-a^{N+4}}{1-a}\right)$
d) $a^{-1}\left(\frac{1-a^{N-4}}{1-a}\right)$
e) none of these
3) For a discrete time system, $\delta(0)$ is equal to
a) 0
b) 1
c) ∞
d) it is not defined
4) If an LTI system with impulse response $h(n)=4^{n-1} u(n-1)$ has input $x(n)=\delta(n)$, the output of the system is
a) $y(n)=4^{n-1} u(n-1) \delta(n)$
b) $y(n)=4^{n-1} u(n)$
c) $y(n)=4^{n-1} u(n-1)$
d) none of these
5) If an LTI system with impulse response $h(n)=3^{n+1} u(n)$ has input $x(n)=3 \delta(n-1)$, the output of the system is
a) $y(n)=3^{n+1} u(n-1)$
b) $y(n)=3^{n} u(n-1)$
c) $y(n)=3^{n} u(n)$
d) none of these
6) If an LTI system with impulse response $h(n)=2^{n-1} u(n-1)$ has input $x(n)=2 \delta(n-1)$, the output of the system is
a) $y(n)=2^{n-2} u(n-2)$
b) $y(n)=2^{n} u(n-2)$
c) $y(n)=2^{n-1} u(n-2)$
d) none of these
\qquad
\qquad
7) If an LTI system with impulse response $h(n)=3 \delta(n-1)$ has input $x(n)=2 \delta(n-1)$, the output of the system is
a) $y(n)=3 \times 2 u(n-2)$
b) $y(n)=3 \times 2 \delta(n-1)$
c) $y(n)=3 \times 2 \delta(n-2)$
d) none of these
8) If an LTI system with impulse response $h(n)=3^{n} u(n)$ has input $x(n)=u(n)$, the output of the system is
a) $y(n)=3^{n} u(n)$
b) $y(n)=3^{n+1} u(n)$
c) $y(n)=\frac{1-3^{n+1}}{1-3} u(n)$
d) $y(n)=\frac{1-3^{n-1}}{1-3} u(n)$ e) none of these
9) If an LTI system with impulse response $h(n)=3^{n} u(n)$ has input $x(n)=2^{n} u(n)$, the output of the system is
a) $y(n)=3^{n} 2^{n} u(n) \quad$ b) $y(n)=3^{n} \frac{1-\left(\frac{2}{3}\right)^{n+1}}{1-\frac{2}{3}} u(n) \quad$ c) $y(n)=2^{n} \frac{1-\left(\frac{3}{2}\right)^{n+1}}{1-\frac{3}{2}} u(n)$
d) $y(n)=\left[\frac{1-\left(\frac{1}{2}\right)^{n+1}}{1-\frac{1}{2}}\right]\left[\frac{1-\left(\frac{1}{3}\right)^{n+1}}{1-\frac{1}{3}}\right] u(n)$
e) none of these
10) The $\operatorname{sum} S=\sum_{k=0}^{\infty} a^{k}$ will converge provided
a) $|a|>1$
b) $|a|<1$
11) If the sum $S=\sum_{k=0}^{\infty} a^{k}$ converges, it is equal to
a) $\frac{1}{1+a}$
b) $\frac{1}{1-a}$
c) $\frac{a}{1-a}$
d) $\frac{a}{1+a}$
e) none of these
\qquad
\qquad

For problems 12-14 assume the closed loop system below and assume $G_{p}(s)=\frac{3}{(s+1)(\mathrm{s}+2)}$

For the following problem you should sketch the root locus to answer the following questions. (You will $\underline{\text { not }}$ be graded on your root locus sketches, just your answers.)
12) Assuming a proportional controller $G_{c}(s)=k_{p}$, what is the settling time as $k_{p} \rightarrow \infty$?
13) Assuming a proportional + derivative controller $G_{c}(s)=k(s+z)$, what is the value of z so that the settling time $T_{s}=\frac{1}{2}$ as $k \rightarrow \infty$
14) Assuming an I controller $G_{c}(s)=\frac{k}{s}$, can the system become unstable for any value of k ?
\qquad Mailbox \qquad

Root Locus Construction

Once each pole has been paired with a zero, we are done

1. Loci Branches

$$
\underset{k=0}{\text { poles }} \rightarrow \underset{k=\infty}{z e r o s}
$$

Continuous curves, which comprise the locus, start at each of the n poles of $G(s)$ for which $k=0$. As k approaches ∞, the branches of the locus approach the m zeros of $G(s)$. Locus branches for excess poles extend to infinity.

The root locus is symmetric about the real axis.

2. Real Axis Segments

The root locus includes all points along the real axis to the left of an odd number of poles plus zeros of $G(s)$.

3. Asymptotic Angles

As $k \rightarrow \infty$, the branches of the locus become asymptotic to straight lines with angles

$$
\theta=\frac{180^{\circ}+i 360^{\circ}}{n-m}, i=0, \pm 1, \pm 2, . .
$$

until all ($n-m$) angles not differing by multiples of 360° are obtained. n is the number of poles of $G(s)$ and m is the number of zeros of $G(s)$.

4. Centroid of the Asymptotes

The starting point on the real axis from which the asymptotic lines radiate is given by

$$
\sigma_{c}=\frac{\sum_{i} p_{i}-\sum_{j} z_{j}}{n-m}
$$

where p_{i} is the $i^{\text {th }}$ pole of $G(s), z_{j}$ is the $j^{\text {th }}$ zero of $G(s), n$ is the number of poles of $G(s)$ and m is the number of zeros of $G(s)$. This point is termed the centroid of the asymptotes.

5. Leaving/Entering the Real Axis

When two branches of the root locus leave or enter the real axis, they usually do so at angles of $\pm 90^{\circ}$.

