ECE-320, Quiz #3

Problems 1-3 refer to the following root locus plot for a unity feedback system with a plant and a controller.

- 1) Based on this root locus plot, the best estimate of the poles of the closed loop system are
- a) -0.3+j7, -0.3-j7, -0.6 b) 1+j2, 1-j2, and -3
- 2) Is this a type one system?
- a) yes b) no
- 3) Is this a stable system?
- a) yes b) no

4) Consider the following root locus plot for a plant and controller in a unity feedback configuration.

If we want the system to be stable, should we

- a) increase the gain
- b) decrease the gain c) do nothing

Problems 5-10 refer to the following feedback system with plant $G_p(s) = \frac{1}{(s+3)(s+4)}$

- **5**) If we use a proportional controller $G_c(s) = k_p$ will the system remain stable for all positive values of k_p ?
- a) yes b) no
- **6)** If we use a proportional controller $G_c(s) = k_p$ is there any value of k_p for which the settling time is less than 0.5 seconds?
- a) yes b) no
- 7) If we use an integral controller $G_c(s) = \frac{k_i}{s}$ will the system remain stable for all positive values of k_i ?
- a) yes b) no
- **8)** If we use an integral controller $G_c(s) = \frac{k_i}{s}$ is there any value of k_i for which the settling time is less than 0.5 seconds?
- a) yes b) no
- 9) For which of the following PID controllers will the settling time be smaller as $k \to \infty$
- a) $G_c(s) = \frac{k(s+2+j)(s+2-j)}{s}$ b) $G_c(s) = \frac{k(s+4+2j)(s+4-2j)}{s}$
- c) the results will be the same
- 10) For which of the following PD controllers will the settling time be smaller as $k \to \infty$
- a) $G_c(s) = k(s+5)$ b) $G_c(s) = k(s+10)$ c) the results will be the same

11) The standard form for a PID controller is

$$G_c(s) = k_p + \frac{k_i}{s} + k_d s$$

For the following PID controller $G_c(s) = \frac{5(s^2 + 2s + 1)}{s}$ determine k_p , k_i , and k_d