\qquad
\qquad

ECE-320, Quiz \#3

Problems 1-3 refer to the following root locus plot for a unity feedback system with a plant and a controller.

1) Based on this root locus plot, the best estimate of the poles of the closed loop system are a) $-0.3+\mathrm{j} 7,-0.3-\mathrm{j} 7,-0.6 \quad$ b) $1+\mathrm{j} 2,1-\mathrm{j} 2$, and -3
2) Is this a type one system?
a) yes b) no
3) Is this a stable system?
a) yes b) no
\qquad
\qquad
4) Consider the following root locus plot for a plant and controller in a unity feedback configuration.

If we want the system to be stable, should we
a) increase the gain
b) decrease the gain
c) do nothing

\qquad
\qquad

Problems 5-10 refer to the following feedback system with plant $G_{p}(s)=\frac{1}{(s+3)(s+4)}$

5) If we use a proportional controller $G_{c}(s)=k_{p}$ will the system remain stable for all positive values of k_{p} ?
a) yes
b) no
6) If we use a proportional controller $G_{c}(s)=k_{p}$ is there any value of k_{p} for which the settling time is less than 0.5 seconds?
a) yes b) no
7) If we use an integral controller $G_{c}(s)=\frac{k_{i}}{s}$ will the system remain stable for all positive values
of k_{i} ?
a) yes b) no
8) If we use an integral controller $G_{c}(s)=\frac{k_{i}}{s}$ is there any value of k_{i} for which the settling time is less than 0.5 seconds?
a) yes b) no
9) For which of the following PID controllers will the settling time be smaller as $k \rightarrow \infty$
a) $G_{c}(s)=\frac{k(s+2+j)(s+2-j)}{s}$
b) $G_{c}(s)=\frac{k(s+4+2 j)(s+4-2 j)}{s}$
c) the results will be the same
10) For which of the following PD controllers will the settling time be smaller as $k \rightarrow \infty$
a) $G_{c}(s)=k(s+5)$
b) $G_{c}(s)=k(s+10)$
c) the results will be the same

[^0]\qquad Mailbox \qquad
11) The standard form for a PID controller is
$$
G_{c}(s)=k_{p}+\frac{k_{i}}{s}+k_{d} s
$$

For the following PID controller $G_{c}(s)=\frac{5\left(s^{2}+2 s+1\right)}{s}$ determine k_{p}, k_{i}, and k_{d}

[^0]: Name

