\qquad
\qquad

ECE-320 Quiz \#1

Problems 1 and 2 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[t+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

1) The number of stable systems is
a) 0 b) 1
c) 2
d) 3
2) The number of unstable systems is
a) 0
b) 1
c) 2
d) 3
3) Which of the following transfer functions represents a stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} \quad G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s} \quad G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but G_{c}
b) only G_{a}, G_{b}, and G_{d}
c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}

Problems 4 and 5 refer to the following transfer function

$$
H(s)=\frac{2 s+1}{(s+2)^{2}+1}
$$

4) For this transfer function, the corresponding impulse response $h(t)$ is composed of which terms?
a) $e^{-t} \cos (2 t), e^{-t} \sin (2 t)$
b) $e^{-2 t} \cos (t), e^{-2 t} \sin (t)$
c) $e^{-t} \cos (4 t), e^{-t} \sin (4 t)$
d) $e^{-4 t} \cos (t), e^{-4 t} \sin (t)$
5) The poles of the transfer function are
a) $2 \pm$ j
b) $-2 \pm j$
c) $-1 \pm 2 j$
d) $-1 \pm 4 \mathrm{j}$
\qquad
\qquad

Problems 6 - 8 refer to the signal flow graph representation of the following block diagram.

6) How many paths are there?
a) 0
b) 1
c) 2
d) 3
e) 4
7) How man loops are there?
a) 0
b) 1
c) 2
d) 3
e) 4
8) Are any of the cofactors equal to 1 ?
a) yes b) no

For problems $9-12$ consider the signal flow graph representation of the following block diagram.

9) How many paths are there?
a) 0
b) 1 c) 2
d) 3
e) 4
10) How many loops are there?
a) 0
b) 1
c) 2
d) 3
e) 4
11) The determinant (Δ) is
a) 1
b) $1-H_{2} H_{3}-H_{3} H_{4}$
c) $1+H_{2} \mathrm{H}_{3}+\mathrm{H}_{3} \mathrm{H}_{4}$
d) none of these
12) The transfer function is a) 1
b) $\frac{H_{1} H_{2} H_{3}}{1-H_{2} H_{3}-H_{3} H_{4}}$
c) $\frac{H_{1} H_{2} H_{3}}{1+H_{2} H_{3}+H_{3} H_{4}}$

