ECE-320: Linear Control Systems Homework 3

Due: Tuesday January 5 at the beginning of class.

1) (sisotool problem) For the plant modeled by the transfer function

$$G_1(s) = \frac{6000}{s^2 + 4s + 400}$$

You are to design a PI controller, a PID controller with **complex conjugate zeros**, and a PID controller with **real zeros** that meet the following specifications

$$PO \le 10\%$$

 $T_s \le 2.5 \text{ sec}$
 $k_p \le 0.5$
 $k_i \le 5$
 $k_d \le 0.01$

In *sisotool*, in the LTI viewer, if you right click on the graph and select **Characteristics** you can let *sisotool* find the settling time. You should copy your step response and root locus plots to a word document, as well as including your values of the controller coefficients.

2) (sisotool problem) For the plant modeled by the transfer function

$$G_2(s) = \frac{6250}{s^2 + 0.5s + 625}$$

You are to design a PI controller, a PID controller with **complex conjugate zeros**, and a PID controller with **real zeros** that meet the following specifications

$$PO \le 10\%$$

 $PI T_s \le 15.0 sec, PID T_s \le 0.5 sec$
 $k_p \le 0.5$
 $k_i \le 5$
 $k_d \le 0.01$

In *sisotool*, in the LTI viewer, if you right click on the graph and select **Characteristics** you can let *sisotool* find the settling time. You should copy your step response and root locus plots to a word document, as well as including your values of the controller coefficients.

- 3) (Easy) Show that $\sum_{l=-\infty}^{l=n} \delta(l) = u(n)$ and $\sum_{l=-\infty}^{l=n} \delta(l-k) = u(n-k)$
- 4) (Easy) For impulse response $h(n) = \delta(n) + 2\delta(n-2) + 3\delta(n-3)$ and input

 $x(n) = \left(\frac{1}{2}\right)^{n-1} u(n-2)$, determine the output y(n) (this should be easy).

- 5) For impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n)$ and input x(n) = u(n), show that the system output is $y(n) = 2\left[1 \left(\frac{1}{2}\right)^{n+1}\right]u(n)$
- a) by evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$
- b) by evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{k=\infty} x(k)h(n-k)$ Note that this is the unit step response of the system.
- 6) For impulse response $h(n) = \left(\frac{1}{3}\right)^{n-2} u(n-1)$ and input $x(n) = \left(\frac{1}{2}\right)^n u(n-1)$, show that the system output is $y(n) = 9 \left[\left(\frac{1}{2}\right)^{n-1} \left(\frac{1}{3}\right)^{n-1}\right] u(n-2)$ by evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$
- 7) For impulse response $h(n) = \left(\frac{1}{2}\right)^{n-3} u(n-1)$ and input $x(n) = \left(\frac{1}{4}\right)^{n+1} u(n-2)$, show that the system output is $y(n) = \left[\left(\frac{1}{2}\right)^n \left(\frac{1}{4}\right)^{n-1}\right] u(n-3)$ by evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$
- 8) For impulse response $h(n) = \left(\frac{1}{3}\right)^{n+1} u(n-2)$ and input $x(n) = \left(\frac{1}{2}\right)^{n-2} u(n+1)$, show that the system output is $y(n) = \frac{16}{9} \left[\left(\frac{1}{2}\right)^n \left(\frac{1}{3}\right)^n\right] u(n-1)$ by evaluating the convolution sum $y(n) = \sum_{k=-\infty}^{\infty} h(n-k)x(k)$