\qquad CM \qquad

ECE-320 Quiz 7

Problems 1 and 2 refer to the following open loop Bode plot of $G(s) H(s)$

1) The gain crossover frequency used to determine the phase margin for this system is best estimated as
a) $0.1 \mathrm{rad} / \mathrm{sec}$
b) $13 \mathrm{rad} / \mathrm{sec}$
c) $30 \mathrm{rad} / \mathrm{sec}$
d) $100 \mathrm{rad} / \mathrm{sec}$
e) $300 \mathrm{rad} / \mathrm{sec}$
2) The phase margin for this system is best estimated as
a) $+55^{\circ}$
b) -55°
c) $+90^{\circ}$
d) -90°

Problems 3-6 refer to the following open loop Bode plot of $G(s) H(s)$

3) The gain crossover frequency used to determine the phase margin for this system is best estimated as
a) $0 \mathrm{rad} / \mathrm{sec}$
b) $1 \mathrm{rad} / \mathrm{sec}$
c) $6 \mathrm{rad} / \mathrm{sec}$
d) $10 \mathrm{rad} / \mathrm{sec}$
e) $60 \mathrm{rad} / \mathrm{sec}$
4) The phase crossover frequency for this system is best estimated as
a) $0 \mathrm{rad} / \mathrm{sec}$
b) $1 \mathrm{rad} / \mathrm{sec}$
c) $6 \mathrm{rad} / \mathrm{sec}$
d) $10 \mathrm{rad} / \mathrm{sec}$
e) $60 \mathrm{rad} / \mathrm{sec}$
5) The phase margin for this system is best estimated as
a) $+25^{\circ}$
b) -25°
c) $+45^{\circ}$
d) -45°
6) The gain margin for this system is best estimated as
a) +8 dB
b) -8 dB
c) $\infty \mathrm{dB}$ d) 0 dB
\qquad CM \qquad

Problems 7-10 refer to the following open loop Bode plot of $G(s) H(s)$

7) The gain crossover frequency used to determine the phase margin for this system is best estimated as
a) $0 \mathrm{rad} / \mathrm{sec}$
b) $10 \mathrm{rad} / \mathrm{sec}$
c) $13 \mathrm{rad} / \mathrm{sec}$
d) $32 \mathrm{rad} / \mathrm{sec}$
8) The phase crossover frequency for this system is best estimated as
a) $0 \mathrm{rad} / \mathrm{sec}$
b) $1 \mathrm{rad} / \mathrm{sec}$
c) $10 \mathrm{rad} / \mathrm{sec}$
d) $20 \mathrm{rad} / \mathrm{sec}$
e) none of these
9) The phase margin for this system is best estimated as
10) The gain margin for this system is best estimated as
a) $+2^{o}$
b) -2°
c) $+90^{\circ}$
d) -90°
a) +5 dB
b) -5 dB
c) $\infty \mathrm{dB}$
d) 0 dB
\qquad CM \qquad

Problems 11 and 12 refer to the following open loop Bode plot of $G(s) H(s)$

11) The gain crossover frequency used to determine the phase margin for this system is best estimated as

12) The phase margin for this system is best estimated as
a) $+150^{\circ}$
b) $+120^{\circ}$
c) $+40^{\circ}$
d) -150°
\qquad

Problems 13-16 refer to the following open loop Bode plot of $G(s) H(s)$

13) The gain crossover frequency used to determine the phase margin for this system is best estimated as
a) $0.1 \mathrm{rad} / \mathrm{sec}$
b) $0.6 \mathrm{rad} / \mathrm{sec}$
c) $13 \mathrm{rad} / \mathrm{sec}$
d) $30 \mathrm{rad} / \mathrm{sec}$
14) The phase crossover frequency for this system is best estimated as
a) $0 \mathrm{rad} / \mathrm{sec}$
b) $10 \mathrm{rad} / \mathrm{sec}$
c) $13 \mathrm{rad} / \mathrm{sec}$
d) $30 \mathrm{rad} / \mathrm{sec}$
15) The phase margin for this system is best estimated as
16) The gain margin for this system is best estimated as
a) $+90^{\circ}$
b) -90°
c) $+20^{\circ}$
d) -20°
a) +25 dB
b) -25 dB
c) $\infty \mathrm{dB}$
d) 0 dB

