\qquad
\qquad

ECE-320,

Quiz \#5

For all of the following problems, assume we are using a two-sided z-transform.

1) The z-transform of a sequence $x(n)$ is defined as
a) $X(z)=\sum_{k=-\infty}^{\infty} x(k) z^{k}$
b) $X(z)=\sum_{k=-\infty}^{\infty} x(k) z^{-k}$
2) The z -transform of the sequence $x(n)=3^{n} u(n)$ is
a) $\frac{z}{3-z}$ b) $\frac{1}{z-3}$
c) $\frac{1}{3-z}$
d) $\frac{z}{z-3}$ e) none of these
3) The z-transform of $x(n)=u(n)$ is
a) $\frac{z}{z-1}$
b) $\frac{1}{z-1}$
c) $\frac{1}{1-z}$
d) $\frac{z}{1-z}$
e) none of these
4) The z-transform of $x(n)=u(n-1)$ is
a) $\frac{z}{z-1}$
b) $\frac{1}{z-1}$
c) $\frac{1}{1-z}$
d) $\frac{z}{1-z}$
e) none of these
5) The z-transform of the sequence $x(n)=\delta(n)$ is
a) 1
b) z
c) z^{-1}
d) 0 e) none of these
6) The z-transform of the sequence $x(n)=\delta(n-1)$ is
a) 1
b) z
c) z^{-1}
d) 0 e) none of these
7) The z-transform of the sequence $x(n)=3^{n+1} u(n)$ is
a) $\frac{3 z}{z-3}$
b) $\frac{1}{3} \frac{z}{z-3}$
c) $\frac{1}{3} \frac{z^{2}}{z-3}$
d) $\frac{3 z^{2}}{z-3}$
e) none of these
\qquad
\qquad
8) The z-transform of the sequence $x(n)=3^{n} u(n-1)$ is
a) $\frac{3}{z-3}$
b) $\frac{3 z}{z-3}$
c) $\frac{9 z}{z-3}$
d) $\frac{9}{z-3}$
e) none of these
9) The z-transform of the sequence $x(n)=3^{n} u(n+1)$ is
a) $\frac{3 z^{2}}{z-3}$
b) $\frac{1}{3} \frac{z}{z-3}$
c) $\frac{1}{9} \frac{z^{2}}{z-3}$
d) $\frac{1}{3} \frac{z^{2}}{z-3}$
e) none of these
10) The z-transform of the sequence $x(n)=2^{n} u(n)$ converges provided
a) $2<|z|$
b) $|z|<2$
11) The z-transform of the sequence $x(n)=\left(\frac{1}{3}\right)^{n} u(n-1)$ converges provided
a) $\frac{1}{3}<|z|$
b) $|z|<\frac{1}{3}$
12) For z-transform $Y(z)=\frac{z^{-1}}{z-2}$, the inverse z-transform is
a) $y(n)=2^{n} u(n)$
b) $y(n)=2^{n-2} u(n-2)$
c) $y(n)=2^{n+2} u(n+2)$
d) $y(n)=2^{n-2} u(n)$
e) none of these
13) For z-transform $Y(z)=\frac{1}{z-2}$, the inverse z-transform is
a) $y(n)=\frac{1}{2} \delta(n)-\frac{1}{2} 2^{n} u(n) \quad$ b) $y(n)=-\frac{1}{2} \delta(n)+\frac{1}{2} 2^{n} u(n)$
14) Which of the following transfer functions represents an (asymptotically) unstable systems? (circle all of them)
a) $G(z)=\frac{z}{z+0.8}$
b) $G(z)=\frac{z}{z-0.8}$
c) $G(z)=\frac{z}{z+1.2}$
d) $G(z)=\frac{z}{z-1.2}$
15) Which of the following systems will have a smaller settling time?
a) $G(z)=\frac{z}{z-0.9}$
b) $G(z)=\frac{z}{z-0.7}$
c) $G(z)=\frac{z}{z+0.5}$
d) $G(z)=\frac{z}{z+0.1}$
\qquad
\qquad

For problems 6-18, consider a closed loop system with transfer function

$$
G_{0}(s)=\frac{s+a}{s^{2}+b s+k}
$$

16) The sensitivity to variations in $k, S_{k}^{G_{0}}(s)$, is
a) $\frac{k}{s^{2}+b s+k}$
b) $\frac{-k}{s^{2}+b s+k}$
c) 1
d) $\frac{k}{s+a}-\frac{k}{s^{2}+b s+k}$
e) none of these
17) The sensitivity to variations in $b, S_{b}^{G_{0}}(s)$, is
a) $\frac{-b}{s^{2}+b s+k}$
b) $\frac{-b s}{s^{2}+b s+k}$
c) 1
d) $\frac{b}{s+a}-\frac{b s}{s^{2}+b s+k}$
e) none of thes
18) The sensitivity to variations in $a, S_{a}^{G_{0}}(s)$, is
a) $\frac{a}{s^{2}+b s+k}$
b) $\frac{-a}{s^{2}+b s+k}$
c) 1)
d) $\frac{a}{s+a}$
e) none of these
19) Assume we compute the sensitivity of a system with nominal value $a=4$ to be

$$
S_{a}^{G_{0}}(s)=\frac{1}{s+a}
$$

For what frequencies will the sensitivity function be less than $\frac{1}{\sqrt{32}}$?
a) $\omega<4 \mathrm{rad} / \mathrm{sec}$
b) $\omega>4 \mathrm{rad} / \mathrm{sec}$
c) $\omega>16 \mathrm{rad} / \mathrm{sec}$
d) $\omega<16 \mathrm{rad} / \mathrm{sec}$
e) none of these
20) Assume we compute the sensitivity of a system with nominal value $a=3$
to be

$$
S_{a}^{G_{0}}(s)=\frac{s+2}{s+1+a}
$$

For what frequencies will the sensitivity function be greater than $\sqrt{\frac{10}{16}}$?
a) $\omega<4 \mathrm{rad} / \mathrm{sec}$ b) $\omega>4 \mathrm{rad} / \mathrm{sec}$ c) $\omega>16 \mathrm{rad} / \mathrm{sec}$
d) $\omega<16 \mathrm{rad} / \mathrm{sec}$
e) none of these
\qquad
\qquad

Problems 21-24 refer to the following system

21) To reduce the sensitivity of the closed loop transfer function variations in the plant G_{p}, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $G_{p f}$ large
d) do nothing, we cannot change the sensitivity
22) To reduce the sensitivity of the closed loop transfer function to variations in the prefilter $G_{p f}$, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $G_{p f}$ small
d) do nothing, we cannot change the sensitivity
23) To reduce the sensitivity of the closed loop transfer function to variations in the controller G_{c} we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large
b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $|H(j \omega)|$ large
d) do nothing, we cannot change the sensitivity
24) To reduce the sensitivity of the closed loop transfer function to variations in the sensor H, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $G_{p f}$ large
d) do nothing, we cannot change the sensitivity
\qquad
\qquad
25) For the system below

to reduce the effects of the external disturbance D on the system output, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $G_{p f}$ large \quad d) do nothing, we cannot change the sensitivity
26) For the system below

to reduce the effects of sensor noise N on the closed loop system, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $|H(j \omega)|$ large
d) do nothing, we cannot change the sensitivity
\qquad
\qquad

For the problems 27-29, assume a, b, c, d, e, and f are real-valued numbers, and write and expression for the magnitude of the following:
27) $Z=\frac{a+j \omega b}{c-j \omega d}$
28) $Z=\frac{a+b-j \omega c}{d+j \omega}$
29) $Z=\frac{a+j+j \omega c+j \omega d}{1-j \omega e+f}$

