ECE-320, Quiz #5

For all of the following problems, assume we are using a two-sided z-transform.

1) The z-transform of a sequence x(n) is defined as

a)
$$X(z) = \sum_{k=-\infty}^{\infty} x(k) z^{k}$$
 b) $X(z) = \sum_{k=-\infty}^{\infty} x(k) z^{-k}$

- 2) The z-transform of the sequence $x(n) = 3^n u(n)$ is
- a) $\frac{z}{3-z}$ b) $\frac{1}{z-3}$ c) $\frac{1}{3-z}$ d) $\frac{z}{z-3}$ e) none of these
- 3) The z-transform of x(n) = u(n) is
- a) $\frac{z}{z-1}$ b) $\frac{1}{z-1}$ c) $\frac{1}{1-z}$ d) $\frac{z}{1-z}$ e) none of these
- 4) The z-transform of x(n) = u(n-1) is
- a) $\frac{z}{z-1}$ b) $\frac{1}{z-1}$ c) $\frac{1}{1-z}$ d) $\frac{z}{1-z}$ e) none of these
- 5) The z-transform of the sequence $x(n) = \delta(n)$ is
- a) 1 b) z c) z^{-1} d) 0 e) none of these
- 6) The z-transform of the sequence $x(n) = \delta(n-1)$ is

a) 1 b) z c) z^{-1} d) 0 e) none of these

7) The z-transform of the sequence
$$x(n) = 3^{n+1}u(n)$$
 is
a) $\frac{3z}{z-3}$ b) $\frac{1}{3}\frac{z}{z-3}$ c) $\frac{1}{3}\frac{z^2}{z-3}$ d) $\frac{3z^2}{z-3}$ e) none of these

- 8) The z-transform of the sequence $x(n) = 3^n u(n-1)$ is
- a) $\frac{3}{z-3}$ b) $\frac{3z}{z-3}$ c) $\frac{9z}{z-3}$ d) $\frac{9}{z-3}$ e) none of these
- 9) The z-transform of the sequence $x(n) = 3^n u(n+1)$ is a) $\frac{3z^2}{z-3}$ b) $\frac{1}{3}\frac{z}{z-3}$ c) $\frac{1}{9}\frac{z^2}{z-3}$ d) $\frac{1}{3}\frac{z^2}{z-3}$ e) none of these
- **10**) The z-transform of the sequence $x(n) = 2^n u(n)$ converges provided
- a) 2 < |z| b) |z| < 2

11) The z-transform of the sequence $x(n) = \left(\frac{1}{3}\right)^n u(n-1)$ converges provided a) $\frac{1}{3} < |z|$ b) $|z| < \frac{1}{3}$

12) For z-transform $Y(z) = \frac{z^{-1}}{z-2}$, the inverse z-transform is

a) $y(n) = 2^{n}u(n)$ b) $y(n) = 2^{n-2}u(n-2)$ c) $y(n) = 2^{n+2}u(n+2)$ d) $y(n) = 2^{n-2}u(n)$ e) none of these

13) For z-transform $Y(z) = \frac{1}{z-2}$, the inverse z-transform is a) $y(n) = \frac{1}{2}\delta(n) - \frac{1}{2}2^{n}u(n)$ b) $y(n) = -\frac{1}{2}\delta(n) + \frac{1}{2}2^{n}u(n)$

14) Which of the following transfer functions represents an (asymptotically) unstable systems? (circle all of them)

a)
$$G(z) = \frac{z}{z+0.8}$$
 b) $G(z) = \frac{z}{z-0.8}$ c) $G(z) = \frac{z}{z+1.2}$ d) $G(z) = \frac{z}{z-1.2}$

15) Which of the following systems will have a smaller settling time?

a)
$$G(z) = \frac{z}{z - 0.9}$$
 b) $G(z) = \frac{z}{z - 0.7}$ c) $G(z) = \frac{z}{z + 0.5}$ d) $G(z) = \frac{z}{z + 0.1}$

For problems 6-18, consider a closed loop system with transfer function

$$G_0(s) = \frac{s+a}{s^2+bs+k}$$

16) The sensitivity to variations in k, $S_k^{G_0}(s)$, is

a)
$$\frac{k}{s^2 + bs + k}$$
 b) $\frac{-k}{s^2 + bs + k}$ c) 1 d) $\frac{k}{s + a} - \frac{k}{s^2 + bs + k}$ e) none of these

17) The sensitivity to variations in b, $S_b^{G_0}(s)$, is

a)
$$\frac{-b}{s^2+bs+k}$$
 b) $\frac{-bs}{s^2+bs+k}$ c) 1 d) $\frac{b}{s+a} - \frac{bs}{s^2+bs+k}$ e) none of thes

18) The sensitivity to variations in a, $S_a^{G_0}(s)$, is

a)
$$\frac{a}{s^2 + bs + k}$$
 b) $\frac{-a}{s^2 + bs + k}$ c) 1) d) $\frac{a}{s + a}$ e) none of these

19) Assume we compute the sensitivity of a system with nominal value a = 4 to be

$$S_a^{G_0}(s) = \frac{1}{s+a}$$

For what frequencies will the sensitivity function be less than $\frac{1}{\sqrt{32}}$?

a) $\omega < 4 \text{ rad/sec b}$ $\omega > 4 \text{ rad/sec c}$ $\omega > 16 \text{ rad/sec d}$ $\omega < 16 \text{ rad/sec e}$ none of these

20) Assume we compute the sensitivity of a system with nominal value a = 3

to be

$$S_a^{G_0}(s) = \frac{s+2}{s+1+a}$$

For what frequencies will the sensitivity function be greater than $\sqrt{\frac{10}{16}}$?

a) $\omega < 4 \text{ rad/sec b}$ $\omega > 4 \text{ rad/sec c}$ $\omega > 16 \text{ rad/sec d}$ $\omega < 16 \text{ rad/sec e}$ none of these

21) To reduce the sensitivity of the closed loop transfer function variations in the plant G_p, we should
a) make |G_c(jω)G_p(jω)H(jω)| large b) make |G_c(jω)G_p(jω)H(jω)| small
c) make G_{pf} large d) do nothing, we cannot change the sensitivity

22) To reduce the sensitivity of the closed loop transfer function to variations in the prefilter G_{pf}, we should
a) make |G_c(jω)G_p(jω)H(jω)| large b) make |G_c(jω)G_p(jω)H(jω)| small
c) make G_{pf} small d) do nothing, we cannot change the sensitivity

23) To reduce the sensitivity of the closed loop transfer function to variations in the controller G_c we should a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small c) make $|H(j\omega)|$ large d) do nothing, we cannot change the sensitivity

24) To reduce the sensitivity of the closed loop transfer function to variations in the sensor H, we should
a) make |G_c(jω)G_p(jω)H(jω)| large b) make |G_c(jω)G_p(jω)H(jω)| small
c) make G_{pf} large d) do nothing, we cannot change the sensitivity

Name _____ Mailbox _____

to reduce the effects of the external disturbance D on the system output, we should a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small c) make G_{pf} large d) do nothing, we cannot change the sensitivity

26) For the system below

to reduce the effects of sensor noise N on the closed loop system, we should a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small

c) make $|H(j\omega)|$ large d) do nothing, we cannot change the sensitivity

For the problems 27 - 29, assume *a*, *b*, *c*, *d*, *e*, and *f* are real-valued numbers, and write and expression for the magnitude of the following:

$$27) \quad Z = \frac{a + j\omega b}{c - j\omega d}$$

$$28) \quad Z = \frac{a+b-j\omega c}{d+j\omega}$$

29)
$$Z = \frac{a+j+j\omega c+j\omega d}{1-j\omega e+f}$$