ECE-320: Linear Control Systems

 Homework 6Due: Tuesday January 27 at the beginning of class

1) For the following two circuits,

show that the state variable descriptions are given by

$$
\begin{gathered}
\frac{d}{d t}\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{b}}{L} & -\frac{1}{L} \\
\frac{1}{C} & -\frac{1}{R_{a} C}
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{L} \\
\frac{1}{R_{a} C}
\end{array}\right] v_{i n}(t) y(t)=\left[\begin{array}{ll}
R_{B} & 0
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]+[0] v_{i n}(t) \\
\frac{d}{d t}\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{a} R_{b}}{L\left(R_{a}+R_{b}\right)} & -\frac{1}{L} \\
\frac{1}{C} & 0
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{R_{b}}{L\left(R_{a}+R_{b}\right)} \\
0
\end{array}\right] v_{i n}(t) y(t)=\left[\begin{array}{ll}
-\frac{R_{a} R_{b}}{R_{a}+R_{b}} & 0
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]+\left[\frac{R_{b}}{R_{a}+R_{b}}\right] v_{i n}(t)
\end{gathered}
$$

2) For the following circuit, the state variables are the current through the inductor and the voltage across the capacitor. Determine a state variable model for this system. Specifically, you need to identify the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D matrices/vectors/scalars.

