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ECE-320 Lab 8:  

Utilizing a dsPIC30F6015 to control the speed of a wheel 

Overview: In this lab we will utilize the dsPIC30F6015 to implement a PID controller to control the 
speed of a wheel. Most of the initial code will be given to you (see the class website), and you will have 
to modify the code as you go on. One of the things you will discover is that you often need to be aware of 
limitations of both hardware and software when you try to implement a controller. The dsPIC30F6015 
has been mounted on a carrier board that allows us to communicate with a terminal (your laptop) via a 
USB cable. In what follows you will need to make reference to the pin out of the dsPIC30F6015 (shown 
in Figure 1) and the corresponding pins on the carrier (shown in Figure 2) 

 

Figure 1. dsPIC30F6015 64-PIN pinout. 
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Figure 2. dsPIC30F6015 carrier. Note that the pin numbers are not consecutive. 

 

 

 

 

 

Part A (Copying the initial files) 

Set up a new folder for this lab, and copy the files for this lab from the class website to this folder. 
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Part B (Putting it all together) 

Now we are ready to start.  Note that at some point in the following process you may need to let the 
system download firmware. Be sure you have selected the correct device (or it will do this twice). 

Start MPLAB X IDE (not IPE) 

 

Select File, then New Project (the screen should default to Mocrochip Embedded and Standalone 
Project) 

Click on Next 

 

In the Select Device section, select the following: 

Family: 16-bit DSCs (dsPIC30) 

Device: dsPIC30F6015 

Click on Next 

 

In the Select Tool section, select PICkit3 

Click on Next 

 

In the Select Compiler section, select XC16 

 Click on Next 

 

In the Select Project Name and Folder section, choose a name and project location 

Click on Finish 

 

Make sure the file lab8.c is in the Project folder. Right click on Source Files, then on Add Existing 
Item, then select lab8.c 

Double click on lab8.c and the code will open in a new window. 
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You should build (compile) the existing program, download it to the dsPIC, and run it.  You should 
see a sequence of numbers on your screen (the secure CRT screen). These correspond to sample times. 

If you see the following message  

You are trying to change protected boot and secure memory. In order to do this you must select the 
"Boot, Secure and General Segments" option on the debug tool Secure Segment properties page. 

Failed to program device 

Then  

• Right Click on the Project Name and select Properties 
• Under Categories in the left panel, click on PICkit3 
• Under Option categories at the top, select Secure Segment 
• On the right select Boot, Secure, and General Segments 
• Then select ok at the bottom.  

 

Your program should now compile. 

 

Part C: Reading in the sensor transducer 

 
In order to determine how fast the motor is spinning, we will need to use the QEI interface. The sensor is 
connected to the center of the wheel, and the other end of the sensor plugs into the breadboard. The pins 
for the interface are shown in Figure 3. You need to connect this interface to +5 volts (red ), ground  
(blue), and the QEA Channel A input (pin 12), and the QEA Channel B input (pin 11).  
 
 

 
 

Figure 3. Encoder pin outs. 
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Part D (Reading in an A/D value) 

Now we want to be able to connect a potentiometer as shown in Figure 4 so we can have a variable 
reference. The software is currently set up for A/D input on AN3/RB3 (pin 13). You will need to do the 
following things: 

• Connect the potentiometer as shown below 
• Set the appropriate TRIS bits for an input signal 

 

Note that this is the same set-up as was used in Lab7. 

 

 
 

Figure 4. Connecting the potentiometer 

Part E: Connecting the power entry 

Plug in both the 5 volt (green) and 12 volt (red) power supplies, as shown in Figure 5. Do not turn on the 
supplies yet (the LEDs should be off) .  

 

Figure 5. Power entry module. 



6 
 

 

Part F: Connecting the H Bridge 

Plug in the H-bridge, shown in Figure 6. You are going to need access to the different pins, so be sure it 
is located in a place you can easily get wires to. 

 

Figure 6. H Bridge connections 

Starting on the left, connect the ground and +5 volt supplies. Next, connect IN1 to RE6 (pin 2) and IN2 
to RE7 (pin 3). (Note that if the motor speed is negative you may want to reverse these connections.) 
Finally connect PWM to PWM 3 high (pin 1). 

Starting on the right, connect (with the twisted wires) the 12 volt power from the power entry module to 
the 12 volt input. Be sure to connect ground to ground and +12 to +12. Next, connect M1 and M2 (using 
the twisted wires from the wheel) to the motor input. 

At this point all of your wiring should be done. You should check it over before you go on. 

Two important things to keep in mind as you do the remainder of this lab: 

• Use the red switch to shut off power to the motor. Sometimes stopping the dsPIC does not stop 
the motor, in which case you will need to use the switch. 

• Unless you are told otherwise (and later in the lab you will be), turn the pot fairly slowly. 
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For this lab, it is probably much easier to use the debugging features in MPLABX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Click here to compile and 
download to PIC 

Click here to pause Click here to exit (stop) 

Click here to reset 

Click here to resume 
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PART G: Determining Initial Scaling 

We need a new program now to control the motor. You will modify lab8.c for the remainder of this lab. 

Now we will start to determine some of our parameters. Turn on the power to the motor (the red LED 
should turn on) and open SecureCRT. When the program starts to run, the output to the screen is the 
current time, the value read from the pot, the dutycycle, and the speed of the wheel in radians/sec. 

With the system at rest start the program and slowly turn the pot so the motor is spinning. Turn the pot 
so the motor is spinning at less than or equal to 30 rad/sec. Let the motor come to a reasonably steady 
value (it will likely keep getting faster). Wait until the motor speed is fairly constant and the input 
reading from the pot is also fairly constant. Record the reading from the pot and the speed of the motor. 
Do this for three different positions of the pot where the steady state speed is less than 80 rad/sec. (Note 
that it is likely to be easiest to use the session log file than look at the screen output.) 

We now want to determine the proportionality constant between the A/D value read from the pot and the 
motor speed in rad/sec. Compute the three scaling factors and average them (mine was approximately 
0.170).  

Change the parameter AD_scale (in your code) to this value. Run the system again at various input 
values. It may take a while for the system to reach steady state. Compare your reference input to the 
actual output. They should be fairly close for some speeds but they will not be exact. For other speeds 
they may be off by a significant amount. This is open loop control. 

PART H: Proportional Control 

We now want to start with our first control scheme, proportional control. You will need to declare the 
variable  kp as a double (at the top of the main routine). Outside of the main loop set kp = 1.0, and 
inside the main loop, after both the speed and reference input are determined, compute the error as error 
= R-speed. Here R is the reference input and speed is the measured output speed of the wheel in 
rad/sec. The control effort is then proportional to this error, so u = kp *error. 

Recompile and download the code onto the microcontroller. Now start the system again. Move the pot to 
a number of different set points, and wait until the system comes to steady state. Most likely the steady 
state value will be approximately one half of the set point. 

Stop the system and change the value of  kp to 5, and then to 10. (Be sure to recompile and download 
after each time). Run the system again for each value of  kp. You should notice that the steady state 
error gets smaller as kp increases. 

PART I: Limiting the slope of the control effort 

One of the first limitations we will have to deal with is the fact that if you try and draw too much power 
all at once, the power supply assumes you have screwed up. This leads to some strange behavior. 
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Starring with kp = 10.0, start the system and turn the pot (setting the reference input) as quickly as you 
can (but don’t worry about turning it all the way). You hear strange sounds from the motor like it is 
starting and stopping (or worse). 

What we need to do in this case is limit the rate at which we allow the control signal to change. At the 
top of the code there is a constant MAX_DELTA_U which indicates the maximum change in control 
effort u from one time step to the next. This constant is going to need to be changed (but we will get to 
that).  Declare a new (double) variable last_u, and set this variable equal to zero outside the main loop. 
Inside the main loop, add statements to the code that do not allow the control effort to increase by more 
than its current value + the maximum allowed increment. Insert this limit on the control effort after 
converting to a pwm signal but before we check that the control effort is not too large. Also be sure to 
update the value of last_u. However, do not update this value until the other statements in the code that 
insure that the value of u is within acceptable limits. Finally, you will need to set the value for 
MAX_DELTA_U.  I would start at around 1000, and change this as necessary.  Try to get this value as 
large as possible. Run your code and try to change the pot (the reference input) as quickly as possible. 
Once you think your values are ok, set kp=100.0 and be sure your system runs acceptably (the motor 
does not shut off and on). 

PART J: Proportional controllers with large gains 

Make sure kp is set to 100 for this part. Compile the code if you need to and start it running. Vary the 
reference signal to a few set points (such as 30 rad/sec, 60 rad/sec, and 90 rad/sec) and allow the system 
to try and reach steady state at each of these set points. You should notice that the speed of the wheel 
varies significantly from the reference point. Part of this is due to the fact that the motor is only capable 
of one direction, but a larger part is due to the fact that small errors are amplified (by 100) and this 
causes the motor to continually oscillate. 

PART K: Integral control 

Recall that using a prefilter to control steady state error can sometimes be problematic since the prefilter 
is outside the feedback loop. An alternative, and generally better, solution is to include some form of 
integral control. Recall that an integral controller has the form 
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Rearranging this we get 
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Since we want the control effort as our output, we will write this as 

( ) ( 1) ( )in nu n u k e= − +  

If we assume the initial control effort is zero, we can write this as follows: 
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Hence to implement the integral control, we need to sum the error terms and then scale them by ik . 

Declare two new (double) variables Isum and ki.  Set the initial value of  Isum to zero outside the main 
loop. Within the main loop update the error summation using something like Isum = Isum + error. 
Within the main loop implement a PI controller as follows: 

u = kp*error + ki*Isum;  

Set kp = 0.0 and ki = 0.1. Modify the print statement at the end of your code so the value of Isum is also 
printed out. Recompile and download your code. Start the system and set the reference signal to a few 
reference points (30, 60, 90 rad/sec, for example), and let the system run for a while. Your system will 
probably exhibit some pretty strange behavior on its way to the correct steady state value (it will bounce 
around the steady state value due to sampling). Look at what is happening to the value of Isum during 
this strange behavior.  

PART L: Integrator problems 

The first problem we need to fix is that our motor is only spinning in one direction. When Isum 
becomes large and negative, we would expect the motor to spin in the other direction, but it can’t. One 
way to minimize this effect is to check to be sure that the value of Isum is greater than or equal to zero. 
Modify your code to do this, recompile, and run it again. 

The second problem we have is called integrator windup. Basically, the accumulated error is becoming 
too large and causes the system to overshoot, and then undershoot. One way to fix this is to limit the 
value of Isum to a maximum value. There is a defined variable at the beginning of the code 
MAX_ISUM. You need to set a reasonable value for this variable and limit the value of Isum be less 
than this max. Modify your code to do this, recompile, download, and run it again. You will have to use 
some trial and error to find a good value for MAX_ISUM since it is also a function of the value of  ki. 
For this part you should probably set ki  between 0.1 and 0.5 and then adjust the value of MAX_ISUM. 
I choose a value somewhere between 10 and 800 (I’m not telling you where, but I am suggesting 
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someplace to start looking).  Do not move on until you have what you think is a reasonable value of 
MAX_ISUM and your code seems to be working. Note that you will still have some oscillations, and 
that to get to a large steady state value MAX_ISUM will need to be fairly large. 

PART M: Including a derivative term 

Finally we need to include a derivative term to implement a full PID controller. You will need to define 
three new (double) variables, kd, Derror, and  last_error. Outside of the main loop set last_error equal 
to zero and set kd equal to 0.01. 

Inside the main loop include the lines 

Derror = error-last-error; 

last_error = error; 

Finally, to implement the full PID controller define the control error u to be 

u = kp*error+ki*Isum+kd*Derror; 

Compile and download your code, and try a few reference points. Your system may still oscillate, but 
we can work on that soon. 

PART N: Designing a PID controller 

At this point, we want to hardcode the value of the reference signal so the step response will start as 
soon as we turn on the system. With the system at rest, twist the pot to a reference value and look at the 
step response.  Try to get to a reference point greater than 90 rad/sec. 

A general plan for designing a  PID controller using a trial and error method (we have no model for the 
plant) is the following: 

• First, set ki = kd = 0, and try to get a good response for a step input using only kp. 
• Next, adjust ki to get a good steady state error. Since the integral control tends to slow the 

system down, don’t make this any larger than you need to. However, you may need to also 
change MAX_ISUM to get a good response. 

• Finally, adjust kd to speed up the response. 
Once you have a good design, you need to log your data so you can make a Matlab plot. If you have 
saved your data in a file named (for example) play3.log, then in Matlab type 

data = load(‘play3.log’); 

t = data(:,1); 

y = data(:,5); 



12 
 

You may have to edit your files to make nice plots (like using t = t-t(1)). Be sure to include labels on 
your axes. The plot I have for one of my results is shown in Figure 7. 

 Design PID controllers to meet the specifications shown below. Include a Matlab generated figure of 
your step response results in your memo, and be sure to include both the sampling interval and the 
values of kp, ki, and kd. Also attach your final code to your e-mail. 

(i) For a sampling interval of T = 0.025 sec (the default) our design criteria is a settling time of 
less than or equal to 1.2 seconds, and a percent overshoot less than 10%. 

(ii) For a sampling time of 0.1 sec, our design criteria is a settling time of less than or equal to 
4.0 seconds, and a percent overshoot less than 10%. 

 

 

Figure 7: Step response for system with T = 0.025 seconds. I am not telling you my parameter values. 

Finally, I would appreciate any comments you may have on this lab, and how to improve it. Also, do 
you think it was useful and we should do more labs like this in the future or not? 
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